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FROM THE EDITOR

OF THE RUSSIAN EDITION

It can safely be asserted that no student preparing for an
entrance examination in physics, for admission to an enginee­
ring institute has yet opened a book similar to this one.
Employing the extremely lively form of dialogue, the authors
were able to comprehensively discuss almost all the subjects
in the syllabus, especially questions usually considered dif­
ficult to understand. The book presents a detailed analysis
of common mistakes made by students taking entrance exa­
minations in physics. Students will find this to be an excep­
tionally clear and interesting textbook which treats of compli­
cated problems from various viewpoints and contains a great
many excellent illustrations promoting a deeper understan­
ding of the ideas and concepts involved.

The authors are lecturers of the Moscow Institute of Electro­
nics Engineering and are well acquainted with the general
level of training of students seeking admission to engineering
institutes; they have years of experience in conducting entran­
ce examinations. The expert knowledge of the authors, in
conjunction with the lively and lucid presentation, has made.
this a very useful study guide for students preparing for physics
examinations.

Prof. G. Epijanoo, D.Sc. (Phys. and Math.)



FORE\VORD

This book was planned as an aid to students preparing for
an entrance examination in physics for admission to an engi­
neering institute. It has the form of a dialogue between the
author (the TEACHER) and an inquisitive reader (the STU­
DENT). This is exceptionally convenient for analysing com­
mon errors made by students in entrance examinations, for
reviewing different methods of solving the same problems
and for discussing difficult questions of physical theory.
A great many questions and problems of school physics are
dealt with. Besides, problems are given (with answers) for
home study. Most of the questions and problems figu­
red in the entrance examinations of the Moscow Institute of
Electronics Engineering in the years 1964-66.

An analysis of mistakes made by students is always in­
structive. Attention can be drawn to various aspects of the
problem, certain fine points can be made, and a more thor­
ough understanding of the fundamentals can be reached.
Such an analysis, however, may prove to be very difficult.
Though there is only one correct answer, there can be a great
many incorrect ones. It is practically impossible to foresee
all the incorrect answers to any question; many of them re­
main concealed forever behind the distressing silence of
a student being orally examined. Nevertheless, one can point
out certain incorrect answers to definite questions that are
heard continually. There are many questions that are
almost inevitably answered incorrectly. This book is based
mainly on these types of questions and problems.
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We wish to .warn the reader that this is by no means a
textbook embracing all the items of the syllabus. He will not
find here a systematic account of the subject matter that may
be required by the study course in physics. He will find this
text to be perhaps more like a freely told story or, rather,
a freely conducted discussion.· Hence, it will be of little use
to those who wish to begin their study of physics or to systema­
tize their khowledge of this science. It was intended, instead,
for those who wish to increase their knowledge of physics on
the threshold of their examinations.

Our ideal reader, as we conceive him, has completed the
required course in school physics, has a good general idea of
what it is all about, remembers the principal relationships,
can cite various laws and has a fair knowledge of the units
employed. He is in that "suspended" state in which he is no
longer a secondary school student and has not yet become a
Iullfledgsd student of an institute. He is eager, however, to
become one. If this reguires an extension of his knowledge in
physics, our book can help him.

Primarily, we hope our book will prove that memorizing
a textbook (even a very good one) is not only a wearisome
business, but indeed a fruitless one. A student must learn to
think, to ponder over the material and not simply learn it
by heart. If such an understanding is achieved, to some extent
or other, we shall consider our efforts worthwhile.

In conclusion, we wish to thank Prof. G. Epifanov without
whose encouragement and invaluable aid this book could not
have been written and prepared for publication. We also
gratefully acknowledge the many helpful suggestions and
constructive criticism that were made on the manuscript by
Prof. V. A. Fabrikant, Associate-Prof. A. G. Chertov, and
E. N. Vtorov, Senior Instructor of the Physics Department
of the Moscow Power Engineering Institute.

L. Tarasov
A. Tarasova
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Fig. 1

where a is the acceleration
of the body.

TEACHER: Using the velo­
O~~;---"'"T""--~""t.J~t city graph, can you find the
~~.-.-.:=---....---~ accelerat ion?

STUDENT: Yes. The acce­
leration is the change in

equals the ratio of length AC

1)

velocity in unit time. It
to length OCt

TEACHER: Good. Now consider periods 2 and 3.
STUDENT: In period 2 the body travels with uniform velo­

city v acquired at the end of period 1. The formula for the dis-
tance travelled is

s=vt

TEACHER: Youhave seengraphs
showing the dependence of the
velocity and distance travelled
by a body on the time of travel
for straight-line, uniformly va­
riable motion. In this connection,
I wish to put the following ques..
tion. Consider a velocity graph
of the kind shown in Fig. I. On
its basis, draw a graph showing
the dependence of the distance tra­
velled on time.

STUDENT: But I have never
drawn such graphs.

TEACHER: There should be no
difficulties. However, let us rea­
son this out together. First we

will divide the whole interval of time into three periods:
1,2 and 3 (see Fig. 1). How does the body travel in period 1?
What is the formula for the distance travelled in this period?

STUDENT: In period 1, the body has uniformly accelerated
motion with no initial velocity. The formula for the distance

travelled is of the form

s (t) = a~2

§ I.

CAN YOU ANALYSE

GRAPHS REPRESENTING

THE KINEMATICS

OF STRAIGHT-LINE

MOTION?

TEACHER: Just a minute, your answer is inaccurate. You
have forgotten that the uniform motion began, not at the ini-
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tial instant of time, but at the instant til Up to that time, the
body had already travelled a distance equal to ati/2. The
dependence of the distance travelled on the elapsed time for
period 2 is expressed by the equation

at 2

, s(t)z::-t-+V(t-t1 ) (2)

With this in mind, please write the formula for the distance
travelled in period 3.

STUDENT: The motion of the body in period 3 is uniformly
decelerated. If I understand it correctly, the formula of the
distance travelled in this period should be

s (t) = a~i + V (tz-t
l

) + V (t-t z) _ adt;tz)2

Fig. 2

I
I
I
I
I
I
I
I

I I
o----~--__':_--- -1-_

t3 ~1 t

where a 1 is the acceleration in period 3. It is only one half
of the acceleration a in period 1, because period 3 is twice
as long as period 1.

TEACHER: Your equation can be simplified somewhat:

s(t)= a~i +v(t-t
l

) - adt;tz)Z (3)

Now, it remains to summarize the results of equations (1),
(2) and (3).

STUDENT: I understand. The graph of the distance travelled
has the form of a parabola for period 1, a straight line for
s period 2 and another parabola

(but turned over, with the con­
vexity facing upward) for pe­
riod 3. Here is the graph I
have drawn (Fig. 2).

TEACHER: There are two
faults in your drawing: the
graph of the distance travelled
should have no kinks. It should
be a smooth curve, i.e. the
parabolas should be' tangent

to the straight line. Moreover,' the vertex of the upper
(inverted) parabola should correspond to the instant of time
t 3' Here is a correct drawing of the graph (Fig. 3).

STUDENT: Please explain it.
TEA~HER: Let us consider a portion of a distance-travelled

vs timegraph (Fig. 4). The average velocity of the body in
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the interval from t to t + ~t equals
s (t +~t)-s (t) - t

~t - an ex

where Ow is the angle between chord AB and the horizontal.
To determine the velocity of the body at the instant t it is
necessary to find the limit of such average velocities for
~t~O. Thus

v(t)=1im s(t+~t)-s(t) (4)
l:1t -to 0 ~t

In the limit, the chord becomes a tangent to the distance­
travelled vs time curve, passing through point A (see the dash­
ed line in Fig. 4). The tangent of the angle this line (tangent

s

O~-.Iz-----+---~~

Fig. 3

s

to'----I,-----:~-~

Fig. 4

to the curve) makes with the horizontal is the value of the
velocity at the instant t. Thus it is possible to find the velo­
city at any instant of time from the angle of inclination of the
tangent to the distance-travelled vs time curve at the corres­
ponding point.

But let us return to your drawing (see Fig. 2). It follows
from your graph that at the instant of time t i (and at t 2) the
velocity of the body has two different values. If we approach
t, from the left, the velocity equals tan ai, while if we ap­
proach it from the right the velocity equals tan a 2• According
to your graph, the velocity of the body at the instant t 1

(and again at t 2) must have a discontinuity, which actually it
has not (the velocity vs time graph in Fig. 1 is continuous).

STUDENT: I understand now. Continuity of the velocity
graph leads to smoothness of the distance-travelled vs time
graph.

13



TEACH.ER: Incidentally, the vertices of the parabolas should
correspond to the instants of time 0 and t 3 because at these
instants the velocity of the body equals zero and the tangent
to the curve must be horizontal for these points.

No», using the velocity graph in Fig. 1, find the distance
travelled by a body by the instant t 2.

STUDENT: First we determine the acceleration a in period 1
from the velocity graph and then the velocity v in period 2.
Next we make use of formula (2). The distance travelled by
the body during the time t 2 equals

at~
s(t2 )= T + v(t 2 - i t ) •

TEACHER: Exactly. But there is a simpler way. The distan­
ce travelled by the body during the time t 2 is numerically
equal to the area of the figure OABD under the velocity vs
time graph in the interval Ot2. Let us consider another pro­
blem to fix what we have learned.

Assume that the distance-travelled os time graph has kinks.
This graph is shown in Fig. 5, where the curved line is a para­
bola with its vertexat point A. Draw the velocity v~ timegraph.

t

B

o

v

t

s

tz t3
Fig. 5 Fig. 6

STUDENT: Since there are kinks in the distance-travelled
graph, there should be discontinuities in the 'velocity graph
at the corresponding instants of time (t 1 and t 2) . Here is my
graph (Fig. 6).

TEACHER: Good. What is the length of BC?
STUDEN.T: It is equal to tan a l (see Fig. 5). We don't,

however, know the value of angle al.
TEACHER: Nevertheless, we should have no difficulty in t

determining the length of BC. Take notice that the distance
travelled by the I'ody by the time t 3 is the same as if it had
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travelled at uniform velocity all the time (the straight line
in the interval from t 2 .tO i « in Fig. 5 is a continuation of
the straight line in the interval from 0 to t 1)' Since the distan­
ce travelled is measured by the area under the velocity graph,
it follows that the area of rectangle ADEC in Fig. 6 is equal
to the area of triangle ABC. Consequently, BC=2EC, i.e.
the velocity at instant t 2 when approached from the left is
twice the velocity of uniform motion in the intervals from 0
to t 1 and from t 2 to t 3"



The concept of a force is one of the basic physical concepts.
Can you apply it with sufficient facility? Do you have a good
understanding of the laws of dynamics?



(0)

:~
(d)

Fig. 7

I 1 I
\ I
\ I
\ I, /

" -,'"... .",.

(0),

STUDENT: Problems in mecha­
nics 'seem to be the most diffi­
cult of all. How do you begin
to solve them?

TEACHER: Frequently, you can
begin by considering the forces
applied to a body. As an exam­
ple, we can take the following
cases (Fig. 7): (a) the body is
thrown upward at an angle to
the horizontal, (b) the body slides
down an inclined plane, (c)
the body rotates on the end of a
string in a vertical plane, and
(d) the body is a pendulum.
Draw arrows showing the forces
applied to the body in each of

these cases, and explain what the arrows represent.
STUDENT: Here is my drawing (Fig. 8). In the first case, P

is the weight of the body and F is the throwing force. In the
second, P is the weight, F is the force

/.--..........., which keeps the body sliding along the
fflJlJmJ/T//T/I/)7/l7!T/l, plane and F,r is the friction force. In

the third, P is the weight, F, is the
centripetal force and T is the tension
in the string. In the fourth case, P is
the weight, F is the restoring force and
T is the tension in the string.

TEACHER: You have made mistakes
in all four cases. Here I have the cor­
rect drawing (Fig. 9).
· One thing that you must understand
clearly is that a force is the result of
interaction between bodies. Therefore,
to show the forces applied to a body
you must first establish what bodies
interact with the given body. Thus,
in the first case, only the earth inte­
racts with the body by attracting it
(Fig. 9a). Therefore, only one force,
the weight P, is applied to the "body.
If we wished to take into considera­
tion the resistance of the air or, say,

§ 2.

CAN YOU SHOW

THE FORCES APPLIED

TO A BODY?
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the action of the wind, wewould have to introduce addi tiona!
forces. No "throwing force", shown in your drawing, actually
exists, since there is no interaction creating such a force.

STUDENT: But to throw a body, surely some kind of force
must be exerted on it.

F
~----"'"

/'lrP "
;~/III//III///II/II/I;;;;;;;;";,

(a)

(a)

(e)

I
\
\,
" ....

,
I

I

".,~

, l'

~F
I
I
I R

(d)

Fig. 8 Fig. 9

TEACHER: Yes, that's true. When you throw a body you
exert a certain force on it. In the case above, however, we
dealt with the motion of the body after it was thrown, i.e.
after the force which imparted a definite initial velocity of
flight to the body had ceased to act. It is impossible to "accu­
mulate" forces; as soon as the interaction of the bodies ends,
the force isn't there any more.

STUDENT: But if only the weight is acting on the body,
why doesn't it fall vertically downward instead of travelling
along a curved path?

TEACHER: It surprises you that in the given case the direc­
tion of motion of the body does not coincide with the direc..
tion of the force acting on it. This, however, fully agrees with

18



Newton's second law. Your question shows that you haven't
given sufficient thought to Newton's laws of dynamics.
I intend to discuss this later (see § 4). Now I want to continue
our analysis of the four cases of motion of. a body. In- the
second case (Fig. 9b), a body is sliding down an inclined pla-
ne. What bodies are interacting with it? .

STUDENT: Evidently, two bodies: the earth and the in­
clined plane.

TEACHER: Exactly. This enables us to find the forces ap­
plied to the body. The earth is responsible for the weight P,
and the inclined plane causes the force of sliding friction FIr
and the force N ordinarily called the bearing reaction. Note
that you entirely omitted force N in your drawing.
. STUDENT: Just a moment! Then the inclined plane acts on
the body with two forces and not one?

TEACHER: There is, of course, only one force. It is, however,
more convenient to deal with it in the form of two component
'forces, one directed along the inclined plane (force of sliding
friction) and the other perpendicular to it (bearing reaction).
The fact that these forces have a common origin, i.e, that they
are components of the same force, can be seen in the existence
of a universal relation between FIr and N:

F1r=kN (5)

where k is a constant called the coefficient of sliding friction.
We shall deal with this relationship in more detail later (§ 3).

STUDENT: In my drawing, I showed a sliding force which
keeps the body sliding down the plane. Evidently, there is no
such force. But I clearly remember hearing t.he term "sliding
force" used frequently in the past. What can you say about
this?

TEACHER: Yes, such a term actually exists. You must bear
in mind, however, that the sliding force, as you call it, is
simply one of the components of the body's weight, obtained
when the weight is resolved into two forces, one along the
plane and the other normal to it. If, in enumerating the forces
applied to the body, you have named the weight, there is no
reason to add the sliding force, one of its components.

In the third case (Fig. ge), the body rotates in a vertical
plane. What bodies act on it?

STUDENT: Two bodies: the earth and the string.
TEACHER: Good, and that is why two forces are applied

to the body: the weight and the tension of the string.
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STUDENT: But what about the centripetal force?
TEACHER: Don't be in such a hurry! So many mistakes are

made in problems concerning the motion of a body in a circle
that I intend to dwell at length on this further on (see § 8).
Here I only wish to note that the centripetal force is not some
kind of additional force applied to the body. It is the resultant
force. In our case (when the body is at the lowest point of its
path), the centripetal force is the difference between the
tension of the string and the weight.

STUDENT: If I understand it correctly, the restoring force
in the fourth case (Fig. gel) is also the resultant of the tension
in the string and the weight? .

TEACHER: Quite true. Here, as in th~ third case, the
string and the earth interact with the body. Therefore, two
forces, the tension of the string and the weight, are applied
to the body.

I wish to emphasize again that forces arise only as a result
of interaction of bodies; they cannot originate from any
"accessory" considerations. Find the bodies acting on the gi­
ven object and you will reveal the forces applied to the object.

STUDENT: No doubt there are more complicated cases than
the ones you have illustrated in Fig. 7. Can we consider them?

TEACHER: There are many examples of morecomplicated
interaction of bodies. For instance, a certain constant hori­
zontal force F acts on a body as a result of which the body mo­
ves upward along an inclined surface. The forces applied to
the body in this case are shown in Fig. 10.

P

Fig. 10

'I T
I I J:W

I I 'e
I I

" I0-_L_- +

+
p

Fig. 11

Another example is the oscillation of an electrically char­
ged pendulum placed inside a parallel-plate capacitor. Here
we have an additional force Fe with which the field of the
capacitor acts on the charge of the pendulum (Fig. 11). It is
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obviously impossible to mention all the conceivable cases
that may come up in solving problems.

STUDENT: What do you do when there are several bodies
in the problem? Take, for example, the case illustrated in
Fig. 12.

TEACHER: You should clearly realize each time the motion
of what bodies or combination of bodies you intend to consi­
der. Let us take, for instance, the motion of body 1 in the
example you proposed. The­
earth, the inclined plane and
string AB interact with this
body.

STUDENT: Doesn't body 2
interact with body 1?

TEACHER: Only through
string AB. The forces applied
to body 1 are the weight P',
force F,r of sliding friction,
bearing reaction N' and the ten- (OJ
sion T' of string AB (Fig. 13a).

B C
A 2

1

Fig. 12 Fig. 13

STUDENT: But why is the friction force directed to the left
in your drawing? It would seem just as reasonable to have it
act in the opposite direction.

TEACHER: To determine the direction of the friction force,
it is necessary to know the direction in which the body is
travelling. If this has not been specified in the problem, we
should assume either one or the other direction. In the given
problem, I assume that body 1 (together with the whole
system of bodies) is travelling to the right and the pulley is
rotating clockwise. Of course, I cannot know this beforehand;
the direction of motion becomes definite only after the corre­
spond ing numerical values are substituted. If my assumption
is wrong, I shall obtain a negative value when I calculate the
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acceleration. Then I will have to assume that the body moves
to the left instead of to the right (with the pulley rotating
counterclockwise) and to direct the force of sliding friction
correspondingly. After this I can derive an equation for cal­
culating the acceleration and again check its sign by substi­
tuting the numerical values.

STUDENT: Why check the sign of the acceleration a second
time? If it was negative when motion was assumed to be to the
right, it will evidently be positive for the secondassumption.

TEACHER: No, it can turn out to be negative in the second
case as well.

STUDENT: I can't understand that. Isn't it obvious that if
the body is not moving to the right it must be moving to the
left?

TEACHER: You forget that the body can also be at rest. We
shall return to this question later and analyse in detail the
complications that arise when we take the friction force into
consideration (see § 7).

For the present, we shall just assume that the pulley rotates
clockwise and examine the motion of body 2.

STUDENT: The earth, the inclined plane, string AB and
string CD interact with body 2. The forces applied to body
2 are shown in Fig. 13b.

TEACHER: Very well. Now let us go over to body 3.
STUDENT: Body 3 interacts only with the earth and with

string CD. Figure 13c shows the forces applied to body 3.
TEACHER: Now, after establishing the forces applied to each

body, you can write the equation of motion for each one and
then solve the system of equations you obtain.

STUDENT: You mentioned that it was not necessary to deal
with each body separately, but that we could also consider
the set of bodies as a whole.

TEACHER: Why yes; bodies 1, 2 and 3 can be examined, not
separately as we have just done, but as a whole. Then, the
tensions in the strings need not be taken into consideration
since they become, in this case, internal forces, i.e. forces
of interaction between separate parts of the item being con­
sidered. The system of the three bodies as a whole interacts
only with the earth and the inclined plane.

STUDENT: I should like to clear up one point. When I de­
picted the forces in Fig. 13b and c, I assumed that the tension
in string CD is the same on both sides of the pulley. Would
that be correct?

22
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TEACHER: Strictly speaking, that's incorrect. If the pulley
is rotating clockwise, the tension in the part of string CD
attached to body 3 should be greater than the tension In the
part of the string attached to body 2. This difference in tension
is what causes accelerated rotation of the pulley. Itwas
assumed in the given example that the mass of the pulley can
be disregarded. In other words, the pulley has no mass that
is to be accelerated, it is simply regarded as a means of chang­
ing the direction of the string connecting bodies 2 and 3.
Therefore, it can be assumed that the tension in string CD is
the same on both sides of the pulley. As a rule, the mass of
the pulley is disregarded unless otherwise stipulated.

Have we cleared up everything?
STUDENT: I still have a question concerning the point of

application of the force. In your drawings you applied all
the forces to a single point of the body. Is this correct? Can
you apply the force of friction, say, to the centre of gravity
of the body?

TEACHER: It should be remembered that we are studying
the kinematics and dynamics, not of extended bodies, but of
material points, or particles, i.e. we regard the body to be of

point mass. On the drawings, however,
(a) we show a body, and not a point, only

for the sake of clarity. Therefore, all
rz the forces can be shown as applied to

a single point of the body.
STUDENT: We were taught that any

simplification leads to the loss of cer­
tain aspects of the problem. Exactly
what do we lose when we regard the

Fz body as a material point?
TEACHER: In such a simplified ap-

r; proach we do not take into account
. the rotational moments which, under

FIg. 14 real conditions, may result in rota-
tion and overturning of the body.

A material point has only a motion of translation. Let us
consider an example. Assume that two forces are applied at
two different points of a body: FI at point A and F

2
at point

B, as shown in Fig. 14a. Now let us apply, at point A, force
F~ equal and parallel to force F2 , and also force F; equal to
f~rce F2 but acting in the opposite direction (see Fig. 14b).
SInce forces F; and F; counterbalance each other, their addi-
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tion doe! not alter the physical aspect of the problem in any
way. However, Fig. 14b can be interpreted as follows: forces
FI and l'~ applied at point A cause motion of translation of
the bod); also applied to the body is a force couple (forces
F2 and f;) causing rotation. In other words, force F2 can be
transferred to point A of the body if, at the same time, the
corresponding rotational moment is added. Whenwe regard the
body as a material point, or particle, there will evidently
be no rotational moment.

STUDENT: You say that a material point cannot rotate but
has only motion of translation. But we have already dealt
with rotational motion-motion in a circle.

TEACHER: Do not confuse entirely different- things. The
motion of translation of a point can take place along various
paths, Io- instance in a circle. When I ruled out the possibi­
lity of rotational motion of a point I meant rotation about
itself, i.e, about any axis passing through the point.



N

§ 3.

CAN YOU DETERMINE

THE FRICTION FORCE?

TEACHER: I should like to
dwell in more detail on the cal­
culation of the friction force in
various problems. I have in mind
dry sliding friction (sliding fri-
ction is said to be dry when there
is no layer of any substance,
such as a lubricant, between the
sliding surfaces).
~TUDENT: But here everything

seems to be quite clear.
TEACHER: Nevertheless, many

mistakes made in examinations
are due to the inability to cal­
culate the friction force. Consi­
der the example illustrated in
Fig. 15. A sled oiweight P is

being pulled with a force F applied to a rope which makes an
angle ex with the horizontal; the coefficient of friction is k.
Find the force of sliding friction. How will you go about it?

STUDENT: Why, that seems to be very simple. The friction
force equals kP.

N

p P
Fig. 15 Fig. 16

TEACHER: Entirely wrong. The force of sliding friction is
equal, not to kP, but to kN, where N is the bearing reaction.
Remember equation (5) from § 2.

.STUDENT: But isn't that the same thing?
TEACHER: In a particular case, the weight and the bearing

reaction may be equal to each other, but, in general, they
are entirely different forces. Consider the example I proposed.
The forces applied to the body (the sled) are the weight P,
bearing reaction N, force FIr of sliding friction and the ten­
sion F of the rope (see Fig. 15). We resolve force F into its
vertical (F sin ex) and horizontal (F cos ex) components. All
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(8)

forces acting in the vertical direction counterbalance one
another. This enables us to find the bearing reaction:

N = P-F sln« (6)

As you can see, this force is not equal to the weight of the
sled, but is less by the amount F sin a. Physically, this is
what should be expected, because the taut rope, being pulled
at an angle upwards, seems to "raise" the sled somewhat. This
reduces the force with which the sled bears on the surface
and thereby the bearing reaction as well. So, in this case,

F,r=k(P-Fsina) (7)

If the rope were horizontal (a=O), then instead of equation
(6) we would have N=P, from which it follows that F,r=kP.

STUDENT: I understand now. I never thought about this
before.

TEACHER: This is quite a common error of examinees who
attempt to treat the force of sliding friction as the product
of the coefficient of friction by the weight and not by the
bearing reaction. Try to avoid such mistakes in the future.

STUDENT: I shall follow the rule: to find the friction force,
first determine the bearing reaction.

TEACHER: So far we have been dealing with the force of
sliding friction. Now let us consider static friction. This has
certain specific features to which students do not always pay
sufficient attention. Take the following example. A body is at
rest on a horizontal surface and is acted on by a horizontal
force F which tends to move the body. How great do you think
the friction force will be in this case?

STUDENT: If the body rests on a horizontal plane and force
F acts horizontally, then N=P. Is that correct?

TEACHER: Quite correct. Continue.
STUDENT: It follows that the friction force equals kP.
TEACHER: You have made a typical mistake by confusing

the forces of sliding and static friction. If the body were slid­
ing along the plane, your answer would be correct. But here
the body is at rest. Hence it is necessary that all forces applied
to the body counterbalance one another. Four forces act on
the body: the weight P, bearing reaction N, force F and the
force of static friction FIr (Fig. 16). The vertical forces P and
N counterbalance each other. So should the horizontal forces
F and FIr Therefore
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STUDENT: It follows that the force of static friction depends
on the external force tending to move the body.

TEACHER: Yes, that is so. The force of static friction in­
creases with the force F. It does not increase infinitely, how­
ever. The force of static friction reaches a maximum value:

(9)

Coefficient k o slightly exceeds coefficient k which characteri­
zes, according to equation (5), the force of sliding friction.
Assoon as the external force F reaches the value koN, the body
begins to slide. At this value, coefficient ko becomes equal to
k, and so the friction force is reduced somewhat. Upon further
increase of force F, the friction force (now the force of sliding
friction) ceases to increase further (until very high velocities
are attained), and the body travels with gradually increasing
acceleration. The inability of many examinees to determine
the friction force is disclosed by the following rather simple
question: what is the friction force when a body of weight P
is at rest on an 'inclined plane with an angle of inclination
a? One hears a variety of incorrect answers. Some say that
the friction force equals kP, and others that' it equals k},r =
=kP cos a.

STUDENT: I understand. Since the body is at rest, we have
to deal with the force of static friction. It should be found
from the condition of equilibrium of forces acting along the
inclined plane. There are two such forces in our case: the

friction force F/r and the sliding force

! 6z t:;F P sin a acting downward along the
-g:::::Q : plane: Therefore, the correct answer is

;;;;n» m~ F/r=P SIn a.
Fig. 17 TEACHER: Exactly. In conclusion,

consider the problem illustrated in
Fig. 17. A load of mass m lies on a body of mass M; the
maximum force of static friction between the two is cha­
racterized by the coefficient k o and there is no friction between
the body and the earth. Find the minimum force F applied to
the body at which the load will begin to slide along it.

STUDENT: First I shall assume that force F is sufficiently
small, so that the load will not slide along the body. Then the
two bodies will acquire the acceleration

F
a= M+m

27



TEACHER: Correct. What force will this acceleration impart
to the load?

STUDENT: It will be subjected to the force of static friction
FIr by the acceleration. Thus

Fm
PI =ma=--r M+m

It follows that with an increase in force F, the force of static
friction FIr also increases. It cannot, however, increase infini­
tely. Its maximum value is

Ftr max =z: koN= komg

Consequently, the maximum value of force F. at which the
two bodies can still travel together as an integral unit is
determined from the condition

Pm
komg= M+m

from which
F=(~ +m)kog

This, then, is the minimum force at which the load begins to
slide along the body.

TEACHER: Your solution of the proposed problem is cor­
rect. I am completely. satisfied with your reasoning.



§ 4.

HOW WELL DO YOU

KNOW NEWTON'S LAWS

OF MOTION?

TEACHER: Please state New­
ton's first law of motion.

STUDENT: A body remains at
rest or in a state of uniform motion
in a straight line until the action
of other bodies compels it to
change that state.

TEACHER: Is this law valid in
all frames of reference?

STUDENT: I don't understand
your question.

TEACHER: If you say that a
body is at rest, you mean that it
is stationary with respect to some
other body which, in the given
case, serves as the reference sys­
tem, or frame of reference. It

is quite pointless to speak of a body being in a state of rest or
definite motion without indicating the frame of reference.
The nature of the motion of a body depends upon the choice
of the frame of reference. For instance, a body lying on the
floor of a travelling railway car is at rest with respect to a
frame of reference attached to the car, but is moving with
respect to a frame of reference attached to the track. Now we
can return to my question. Is Newton's first law valid for all
frames of reference?

STUDENT: Well, it probably is.
TEACHER: I see that this question has taken you unawares.

Experiments show that Newton's first law is not valid for all
reference systems. Consider the example with the body lying
on the floor of the railway car. We shall neglect the friction
between the body and the floor. First we shall deal with the
position of the body with respect to a frame of reference
attached to the car. We can observe the following: the body
rests on the floor and, all of a sudden, it begins to slide along
the floor even though no action of ahy kind is evident. Here
we have an obvious violation of Newton's first law of motion.
The conventional explanation of this effect is that the car,
which had been travelling in a straight line and at uniform
velocity, begins to slow down, because the train is braked,
and the body, due to the absenceof friction, continues to main­
tain its state of uniform straight-line motion with respect
to the railway tracks. From this we can conclude that New-
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ton's law holds true in a frame of reference attached to the
railway tracks, but not in one attached to a car being slowed
down.

Frames of reference for which Newton's first law is valid
are said to be inertial; those in which it is not valid are non­
inertial. For most of the phenomena we deal with we can
assume that any frame of reference is inertial if it is attached
to the earth's surface, or to any other bodies which are at rest
with respect to the earth's surface or travel in a straight line
at uniform velocity. Noninertial frames of reference are sys­
tems travelling with acceleration (or deceleration), for in­
stance rotating systems, accelerating or decelerating lifts,
etc. Note that not only Newton's first law of-motion is inva­
lid for noninertial reference systems, but his second law as
well (since the first law is a particular case of the second
law).

STUDENT: But if Newton's laws cannot be employed for
frames of reference travelling with acceleration, then how can
we deal with mechanics in such frames?

TEACHER: Newton's laws of motion can neverthelessbe used
for noninertial frames of reference. To do this, however, it
will be necessary to apply, purely formally, an additional
force to the body. This force, the so-called inertial force,
equals the product of the mass of the body by the acceleration
of the reference system, and its direction is opposite to the
acceleration of the body. I should emphasize that no such
force actually exists but, if it is formally introduced, then
Newton's laws of motion will hold true in a noninertial frame
of reference.

I want to advise you, however, to employ only inertial
frames of reference in solving problems. Then, all the forces
that you have to deal with will be really existing forces.

STUDENT: But if we limit ourselves to inertial frames of
reference, then we cannot analyse, for instance, a problem
about a body lying on a rotating disk.

TEACHER: Why can't we?The choice of the frame of refe­
rence is up to you. If in such a problem you use a reference
system attached to the disk (i.e, a noninertial system), the
body is considered to be at rest. But if your reference system is
attached to the earth (Le. an inertial reference system),
then the body is dealt with as one travelling in a circle.
I would advise you to choose an inertial frame of reference.

And now please state Newton's second law of motion.
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STUDENT: This law can bewrittenasF=ma, whereF is the
force acting on the body, m is its mass and a-acceleration.

TEACHER: Your laconic answer is very typical. I should
make three critical remarks on your statement; two are not
v~ry__ important and one is essential. In the first place, it is
not the force that results from the acceleration, but, on the

"contrary, the acceleration is the result of the applied force.
It is therefore more logical to write the equation of the law as

BFa= - (10)
m

where B is the proportionality factor depending upon the
choice of units of measurement of the quantities in equation
(10). Notice that your version had no mention of the propor­
tionality factor B.

Secondly, a body is accelerated by all forces applied to it
(though some may counterbalance one another). Therefore, in
stating the law you should use, not the term "force", but the
more accurate term "resultant force".

J-My third remark is the most important. Newton's second
law establishes a relationship between force and acceleration.
But force and acceleration are vector quantities, characterized
not only by their numerical value (magnitude) but by their
direction as well. Your statement of the law fails to specify
the directions. This is an essential shortcoming. Your state­
ment leaves out a vital part of Newton's second law of motion.
Correctly stated. it is: the acceleration of a body is directly
proportional to the resultant of all forces acting on the body,
inversely proportional to the mass of the body and takes place
in the direction of the resultant force.· This statement can be
analytically expressed by the formula

~

~ BF
a=­m (11 )

(where the arrows over the letters denote vectors).
STUDENT: When in § 2 we discussed the forces applied to

a body thrown upward at an angle to the horizontal, you said
you would show later that the direction of motion of a body
does not necessarily coincide with the direction of the force
applied to it. You referred then to Newton's second law.

TEACHER: Yes, I remember, and I think it would be quite
appropriate to return to this question. Let us recall what
acceleration is. As we know, acceleration is characterized by
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the change in velocity in unit time. Illustrated in Fig. 18
-+ -+

are the velocity vectors VI and V 2 of a body for two nearby in-
stants of time t and t+~t. The change in velocity during the
time ~t is the vector ~;=;2-V-+I' By definition, the accele­
ration is

(12)

or, more rigorously,
-+

-+- L\v
a(t)=lim- (13)

&t-..O ~t

It follows that the acceleration vector is di;ected along vec­
tor ~v, which represents the change in velocity during a suf­
ficiently short interval of time. It is evident from Fig. 18

Fig. 18 Fig. 19

that the velocity vectors and the change in velocity vector
can be oriented in entirely different directions. This means
that, in the general case, the acceleration and velocity vectors
are also differently oriented. Is that clear?

STUDENT: Yes, now I understand. For example, when a body
travels in a circle, the velocity of the body is directed along
a tangent to the circle, but its acceleration is directed along
a radius toward the centre of rotation (I mean centripetal ac­
celeration).

TEACHER: Your example is quite appropriate. Now let us
return to relationship (11) and make it clear that it is pre­
cisely the acceleration and not the velocity that is oriented
in the direction of the applied force, and that it is again
the acceleration and not the velocity that is related to the
magnitude of this force. On the other hand, the nature of a
body's motion at any given instant is determined by the
direction and magnitude of its velocity at the given instant
(the velocity vector is always tangent to the path of the body).
Since the acceleration and velocity are different vectors,
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the direction of the applied force and the direction of motion
of the body may not coincide in the general case. Consequent­
ly, the nature of the motion of a body at a given instant is
not uniquely determined by the forces acting on the body at
the given instant.

STUDENT: This is true for the general case. But, of course,
the direction of the applied force and the velocity may coin­
cide.

TEACHER: Certainly, that is possible. Lift a body and
release it carefully, so that no initial velocity is imparted
to it. Here the direction of motion will coincide with the
direction of the force of gravity. If, however, you impart a
horizontal initial velocity to the body then its direction of
motion will not coincidewith the direction of the gravity force;
the body will follow a parabolic path. Though in both casesthe
body moves due to the action of the same force-its weight­
the nature of its motion differs. A physicist would say that
this difference is due to the different initial conditions: at
the beginning of the motion the body had no velocity in the
first case and a definite horizontal velocity in the second.
Illustrated in Fig. 19 are the trajectories of bodies thrown
with initial velocities of different directions, but in all cases
the same force, the weight of the body, is acting on it.

STUDENT: Does that mean that the nature of the motion of
a body at a given instant depends not only on the forces act­
ing on the body at this instant, but also on the initial con­
ditions?

TEACHER: Exactly. It should be emphasized that the ini­
tial conditions reflect the prehistory of the body. They are the
result of forces that existed in the past. These forces no lon­
ger exist, but the result of their action is manifested. From
the philosophical. point of view, this demonstrates the rela­
tion of the past to the present, l.e, the principle of causality.
Note that if the formula of Newton's second law contained
the velocity and not the acceleration, this relationship of
the past and present would not be revealed. In this case, the
velocity of a body at a given instant (i.e. the nature of its
motion at a given instant) would be fully determined by the
forces acting on the body precisely at this instant; the past
would have no effect whatsoever on the present.

I want to cite one more example illustrating the aforesaid.
It is shown in Fig. 20: a ball hanging on a string is subject
to the action of two forces, the weight and the tension of the

2-118



I
I
I
I'
I__--L-_r" J ....

' ......._~----
I

II
I I

I I
I I

I I
I I

I I

d :--- ....--t-----
I

ra)

string. If it is deflected to one side of the equilibrium posi­
tion and then released, it will begin to oscillate. If, however,
a definite velocity is imparted to the ball in a direction per­
pendicular to the plane of deviation, the ball will begin to
travel in a circle at uniform velocity. As you can see, depen­
ding upon the initial conditions, the ball either oscillates in
a plane (see Fig. 20a) , or travels at uniform velocity in a

circle (see Fig. 20b). Only two forces
act on it in either case: its weight and
the tension of the string.

STUDENT: I haven't considered New­
ton's laws from this viewpoint.

TEACHER: Nowonder-then that some
students, in trying to determine the
forces applied to a body, base their
reasoning on the nature of motion
without first finding out what bodies
interact with the given body. You
may recall that you did the same.
That is exactly why, when drawing
Figs. Be and &i, it seemed to you that
the sets of forces applied to the body
in those cases should be different.
Actually, in both cases two forces are
applied to the body: its weight and
the tension of the string.

p STUDENT: Now I understand that
Fig. 20 the sameset of forces can cause motions

of different nature and therefore data
on the nature of the motion of a body cannot serve as a
starting point in determining the forces applied to the body.

TEACHER: You have stated the matter very precisely. There
is no need, however, to go to the extremes. Though different
kinds of motion may be caused by the same set of forces (as
in Fig. 20), the numerical relations between the acting for­
ces differ for the different kinds of motion. This means that
there will be a different resultant applied force for each mo­
tion. Thus, for instance, in uniform motion of a body in a
circle, the resultant force should be the centripetal one; in
oscillation in a plane, the resultant force should be the res­
toring force. From this it follows that even though data
on the kind of motion of a body cannot serve as the basis for
determining the applied forces, they are far from superfluous.

34



p

Fig. 21

Pcosa
p

fQ)

In this connection, let us return to the example illustrated
in Fig. 20. Assume that the angle ex, between the vertical
and the direction of the string is known and so is the weight
P of the body. Find the tension T in the string when (I) the
oscillating body is in its extreme position, and (2) when the
body is travelling uniformly in a circle. In the first case,
the resultant force is the restoring force and it is perpendi­
cular to the string. Therefore, the weight P of the body is
resolved into two components, with one component along the

resultant force and the
other perpendicular to it
(Le. directed along the
string). Then the forces
perpendicular to the re­
suItant force, i. e. those
acting in the direction
along the string, are
equated to each other
(see Fig. 21a). Thus

T 1 = P cos ex,

In the second case, the
resultant force is the

centripetal one and is directed horizontally. Hence, the
tension T 2 of the string should be resolved into a vertical
and a horizontal force, and the forces perpendicular to the
resultant force, i.e, the vertical forces, should be equated to
each other (Fig. 2Ib). Then

T 2 cos cx= P or
p

T=--
2 cos ex

As you can see, a knowledge of the nature of the body's mo­
tion proved useful in finding the tension of the string.

STUDENT: If I understand all this correctly, then, knowing
the interaction of bodies, you can find the forces applied
to one of them; if you know these forces and the initial con­
ditions, you can predict the nature of the motion of the body
(the magnitude and direction of its velocity at any instant).
On the other hand, if you know the kind of motion of a body
you can establish the relationships between the forces applied
to it. Am I reasoning correctly?

TEACHER: Quite so. But let us continue. I want to propose
a comparatively simple problem relating to Newton's second
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is caused by the resultant of all the forces applied to it.
There are four such forces and their resultant is F-f. This
is what causes the acceleration of the system. Now you see
that this acceleration is not associated with the interaction
between the horse and the waggon.

STUDENT: SO the earth's surface turns out to be, not simply
the place on which certain events occur,but an active parti­
cipant of these events.

TEACHER: Your pictorial comment is quite true. Inciden­
tally, if you locate the horseand waggon on an ideal icy surfa­
ce, thereby excluding all horizontal interaction between this
system and the earth, there will be no motion, whatsoever.

It should be stressed that no internal interaction can
impart acceleration to a system as a whole. This can be done
only by external action (you can't lift yourself by your hair,
or bootstraps either). This is an important practical inference
of Newton's third law of motion.
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If you know mechanics well, you can easily solve problems.
The converse is just as true: if you solve problems readily, you
evidently have a good knowledge of mechanics. Therefore,
extend your knowledge of mechanics by solving as many
problems as you can.



Fig. 23

§ 5.

HOW DO YOU GO ABOUT

SOLVING PROBLEMS

IN KINEMATICS?

TEACHER: Assume that two
bodies are falling from a- certain
height. One has no initial velo­
city and the other has a certain
initial velocity in a horizontal
direction. Here and further on
we shall disregard the resistance
of the air. Compare the time it
takes for the two bodies to fall
to the ground.

STUDENT: The motion of a
body thrown horizontally can be
regarded as a combination of two
motions: vertical and horizontal.
The time of flight is determined
by the vertical component of the
motion. Since the vertical motions

of the bodies are determined in both cases by the same data
(saine height and the absence of a vertical component of the
initial velocity), the time of fall is the same for the two bodies.
It equals V2H/g, where H is the initial height.

TEACHER: Absolutely right. Now let us consider a more
complex case. Assume that both bodies are falling from the
height H with no initial velocity, but in its path one-of them
meets a fixed plane, inclined at an angle of 45° to the horizon-

tal. As a result of this impact on the plane
the direction of the velocity of the body
becomes horizontal (Fig. 23). The point of
impact is at the height h. Compare the
times of fall of the two bodies.

STUDENT: Both bodies take the same
time to fall to the level of the inclined
plane. As a result of the impact on the

, plane one of the bodies acquires a hori-
zontal component of velocity. This hori­
zontal component cannot, however,

influence the vertical component of the body's motion. The­
refore, it follows that in this case as well the time of fall
should be the same for the bodies.'

TEACHER: Your answer is wrong. You were right in saying
that the horizontal component of the velocity doesn't influence
the vertical motion of the body and, consequently, its time of
fall. When the body strikes the inclined plane it not only
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acquires a horizontal velocity component, but also loses the
vertical component of its velocity, and this of course must
affect the time of fall. After striking the inclined plane,
the body falls from the height h with no initial vertical
velocity. The impact against the plane delays the vertical
motion of the body and thereby increases its time of fall.
The time of fall for the body which dropped straight to the
ground is V2H/g; that for the body striking the plane is
V2 (H-h)/g+V2h/g. .

This leads us to the following question: at what h to H ratio
will the time of fall reach its maximum value? In other words,
at what height should the inclined plane be located so that it
delays the fall most effectively?

STUDENT: I am at a loss to give you an exact answer. It
seems to me that the ratio h/H should not be near to 1 or to 0,
because a ratio of 1 or 0 is equivalent to the absence of any
plane whatsoever. The inclined plane should be located
somewhere in the middle between the ground and the ini­
tial point.

TEACHER: Your qualitative remarks are quite true. But you
should find no difficulty in obtaining the exact answer. We
can write the time of fall of the body as

t= y2: (Vl-x +VX") where x= ~

Now we find the value of x at which the function t(x) is a
maximum. First we square the time of fall. Thus

t 2 = 2H [1 +2V(I-x) x Jg

If the time is maximal, its square is also maximal. It is
evident from the last equation that t 2 is a maximum when the
function Y= (1- x) x is a maximum. Thus, the problem is
reduced to finding the maximum of the quadratic trinomial

Y= -x2+x= -(x- ;Y + ~

This trinomial is maximal at x= 1/2. Thus, height h should be
one half of height H. .

Our further discussion on typical procedure for solving
problems in kinematics will centre around the example of a
body thrown upward at an angle to the horizontal (usually
called the elevation angle).
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STUDENT.: I'm not very good at such problems.
TEACHER: We shall begin with the usual formulation of the

problem: a body is thrown upward at an angle of ex, to the ho­
rizon with: an initial velocity of Vo. Find the time of flight T,
maximum height reached H and the range L. As usual, we first
find the forces acting on the body. The only force is gra­
vity. Consequently, the body travels at uniform velocity in
the .horizontal direction and with uniform acceleration g .in
the vertical direction. We are going to deal with the vertical
and horizontal components of motion separately, for which

Fig. 24

purpose we resolve the initial velocity vector into the verti­
cal (vo sin cx,) and horizontal (vo cos ex,) components. The ho­
rizontal velocity component remains constant throughout
the flight while the vertical component varies as shown in
Fig. 24. Let us examine the vertical component of the motion.
The time of flight T= T i +T 2, where T 1 is the time of ascent
(the body travels vertically with uniformly deceleratedmotion)
and T 2 is the time of descent (the body travels vertically
downward with uniformly accelerated motion). The vertical
velocity of the body at the highest point of its trajectory (at
the instant t=T 1) is obviously equal to zero. On the other
hand, this velocity can be expressed by the formula showing
the dependence of the velocity of uniformly decelerated motion
on time. Thus we obtain

0= Vosin a-gTl

or
T _ 0 0 sin Ct
1- g

When T 1 is known we can obtain

H T · gT~ 05 sin 2 Ct=vo ISllla--2- = 2g
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The time of descent T i can be calculated as the time a body
falls from the known height H without any initial vertical
velocity:

T = ow j2ii = Vo sin a
,2 V g g

Comparing this with equation (14) we see that the time of
descent is equal to the time of ascent. The total time of flight is

T= 2vosin a
g

(16)

To find the range L, or horizontal distance travelled, we make
use of the horizontal component of motion. As mentioned
before, the body travels horizontally at uniform velocity.
Thus

V~ sin 2aL= (vocosa)T=--­g (17)

It can be seen from equation (17) that if the sum of the angles
at which two bodies are thrown is 90° and if the initial velo­
cities are equal, the bodies will fall at the same point.

Is everything clear to you so far?
STUDENT: Why yes, everything seems to be clear.
TEACHER: Fine. Then we shall add some complications.

Assume that a horizontal tail wind of constant force Facts
on the body. The weight of the body is P. Find, as in. the
preceding case, the time of {light T, maximum height reached
H, and range L.

STUDENT: In contrast to the preceding problem, the hori­
zontal motion of the body is not uniform; now it travels with
a horizontal acceleration of a= (F /P)g.

TEACHER: Have there been any changes in the vertical
component of motion?

STUDENT: Since the force of the wind acts horizontally t

the wind cannot affect the vertical motion of the body.
TEACHER: Good. Now tell me which of the sought-for quan­

tities should have the same values as in the preceding problem.
STUDENT: These will evidently be the time of flight T

and the height H. They are the ones determined on the basis
of the vertical motion of the body. They will therefore be
the same as in {he preceding pr-oblem.

TEACHER: Excellent. How about the range?
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STUDENT: The horizontal acceleration and time of flight
being known, the range can be readily found. Thus

L- ( ) T + aT2 _ v~ sin 2a + 2F v~ sln 2 a
- vo cos~ 2 - g P g

TEACHER: Quite correct. Only the answer would best be
written in another form:

L= V~S;2C% (1 + ~ tan « ) (18)

Next we shall consider a new problem: a body is thrown at an
angle ex to an inclined plane which makes the.angle ~ with
the horizontal (Fig. 25). The body's initial velocity is V o•

LJo Find the distance L from the
point where the body is thrown
to the point where it falls on the
plane.

STUDENT: I once made an at­
tempt to solve such a problem
but failed.

TEACHER: Can't you see any
Fig. 25 similarity between this problem

and the preceding one?
STUDENT: No, I can't.
TEACHER: Let us imagine that the figure for this problem

is turned through the angle ~ so that the inclined plane
becomes horizontal (Fig. 26a). b
Then the force of gravity is no ()
longer vertical. Now we resolve
it into a vertical (P cos p) and

(O)

a horizontal (P sin ~) component. You can readily see
now that we have the preceding problem again, in which the
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force P sin ~ plays the role of the force of the wind, and
p cos ~ the role of the force of gravity. Therefore we can
find the answer by making use of equation (18) provided that
we make the following substitutions:

P sin ~ for F, P cos p for P, and g cos ~ for g.

Then we obtain

L = v~ sin ~cx (l + tan ~ tan a) (19)
gcos

At ~=O, this coincides with equation (17). Of interest is
another method of solving the same problem. We introduce the
coordinate axes Ox and Oy with the origin at the point the
body is thrown from (Fig. 26b). The inclined plane is repre­
sented in these coordinates by the linear function

Yl=-xtan~

and the trajectory of the body is described by the parabola

Y2= ax2+bx

in which the factors a and b can be expressed in terms of
Vo, a and ~. Next we find the coordinate XA of the point A
of intersection of functions Yl and Y2 by equating the expres­
sions for these functions. Thus

- x tan ~ = ax» +bx

From this it follows that XA = (tan ~+b)/(-a). Then we can
easily find the required distance L=OA:

L=~= tan ~1b (20)
cos p a cos

It remains to express factors a and b in terms of Vo, a and
~. For this purpose, we examine two points of the parabola­
Band C (see Fig. 26b). We write the equation of the parabola
for each of these points:

Y2C= ax~ +bxc }
Y2B = ax~+ bXB

The coordinates of points C and B are known to us. Consequent­
ly, the preceding system of equations enables us to determine
factors a and b. I suggest that in your spare time youcomplete
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the solution of this problem and obtain the answer in the form
of equation (19).

STUDENT: I like the first solution better.
TEACHER: That is a matter of taste. The two methods of.

solution differ essentially in their nature. The first could
be called the "physical" method. It employs simulation which
is so typical of the physical approach (we slightly altered
the point of view and reduced our problem to the previously
discussed problem with the tail wind). The second method
could be called "mathematical". Here we employed two func­
tions and found the coordinates of their points of intersection.
In my opinion, the first method is the more elegant, but less
general. The field of application of the second method is
substantially wider. It can, for instance, be applied in prin­
ciple when the profile of the hill from which the body is
thrown is not a straight line. Here, instead of the linear
function Yi, some other function will be used which conforms
to the profile of the hill. The first method is inapplicable
in principle in such cases. We may note that the moreexten­
sive field of application of mathematical methods is due to
their more abstract nature.

PROBLEMS

1. Body Ais thrown vertically upward with a velocity of 20 m per sec.
At what height was body B which, when thrown at a horizontal velocity
of 4 m per sec at the same ti me body A was thrown, collided with it in its
flight? The horizontal distance between the initial points of the flight
equals 4 m. Find also the time of flight of each body before the collision
and the velocity of each at the instant of collision.

2. From points A and B, at the respective heights of 2 and 6 m, two
bodies are thrown simultaneously towards each other: one is thrown hori­
zontally with a velocity of 8 m per sec and the other, downward at an angle
of 45° to the horizontal and at an initial velocity such that the bodies
collide in flight. The horizontal distance between points A and B equals
8 m. Calculate the initial velocity Vo of the body thrown at an angle of
45°, the coordinates x and y of the point of collision, the time of flight
t of the bodies before colliding and the velocities VA and VB of the two bodies
at the instant of collision. The trajectories of the bodies lie in a single
plane.

3. Two bodies are thrown from a single point at the angles al and cx2
to the horizontal and at the initial velocities VI and V2 , respectively. At
what distance from each other will the bodies be after the time t? Consider
two cases: (1) the trajectories of the two bodies lie in a single plane and the
bodies are .thrown in opposite directions, and (2) the trajectories lie in
mutually perpendicular planes.
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4. A body falls from the height H with no initial velocity. At
the height h it elastically bounces off a plane inclined at an angle
of 30° to the horizontal. Find the time it takes the body to reach the
ground.

5. At what angle to the horizontal (elevation angle) should a body of
weight P be thrown so that the maximum height reached is equal to the
range? Assume that a horizontal tail wind of constant force F acts on the
body in its flight.

8. A stone is thrown ufward, perrendicular to an inclined plane with
an angle of inclinationa. I the initia velocity is vo, at what distance from
the point from which it is thrown will the stone fall?

7. A boy 1.5 m tall, standing at a distance of 15 m from a fence 5 m
high, throws a stone at an angle of 45° to the horizontal. With what mini­
mum velocity should the stone be thrown to fly over the fence?



§ 6.

HOW DO YOU GO ABOUT

SOLVING PROBLEMS

JN DYNAMICS?

rEACHER: In solving problems
in dynamics it is especially im­
portant to be able to determine
correctly the forces applied to
the body (see § 2).

STUDENT: Before we go any
further, I wish to ask one ques­
tion.Assurning that I have correct­
ly found all the forces applied
to the body, what should I do
next?

TEACHER: If the forces are not
directed along a' single straight
line, they should be resolved
in two mutually perpendicular
directions. The force components
should be dealt with separately

for each of these directions, which we shall call "directions
of resolution". We can begin with some practical advice.
In the first place, the forces should be drawn in large scale to
avoid confusion in resolving them. In trying to save space
students usually represent forces in the form of almost micro­
scopic arrows, and this does not help. You will understand
what I mean if you compare your drawing (Fig. 8) with mine
(Fig. 9). Secondly, do not hurry to resolve the forces before
it can be done properly. First you should find all forces ap­
plied to the body, and show them in the drawing. Only then
can you begin to resolve some of them. Thirdly, you must
remember that after you have resolved a force you should
"forget" about its existence and use only its components. Eith­
er the force itself, or its components, no compromise.

STUDENT: How do I choose the directions of resolution?
TEACHER: In making your choice you should consider the

nature of the motion of the body. There are two alternatives:
(1) the body is at rest or travels with uniform velocity in a
straight line, and (2) the body travels with acceleration and
the direction of acceleration is given (at least its sign).

In the first case you can select the directions of resolu­
tion arbitrarily, basing (or not basing) your choice on consi­
derations of practical convenience. Assume, for instance, that
in the case illustrated in Fig. 10 the body slides with uniform
velocity up the inclined plane. Here the directions of resolu­
tion may be (with equal advantage) either vertical and
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F
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horizontal (Fig. 27a) or along the inclined plane and perpen­
dicular to it (Fig. 27b).

After the forces have been resolved, the algebraic sums of
the component forces for each direction of resolution are
equated to zero (remember that we are still dealing with the

(6)

Fig. 27

motion of bodies without acceleration). For the case illust­
rated in Fig. 27a we can write the system of equations

NCOsa.-F/rsina.-p=O} (21)
F-F/rcosa.-N sina.= 0

The system of equations for the case in Fig. 27b is

N -P cos a.-F sina.= 0 }
F/r+Psinex-Fcosex=O (22)

STUDENT: But these systems of equations differ from each
other.

TEACHER: They do but, nevertheless, lead to the same re­
sults, as can readily be shown. Suppose it is required to find
the force F that will ensure the motion of the body at uniform
velocity up along the inclined plane. Substituting equation
(5) into equations (21) we obtain

N(cosa.-ksina.)-P=O }
F - N (k cos a.+ sin «) = 0

From the first equation of this system we get

N= p
cos a-k sin ex
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which is substituted into the second equation to determine
the required force. Thus

F = pk cos a+ 5~n a
cos a-k 51n a

Exactly the same answer is obtained from equations (22).
You can check this for yourself.

STUDENT: What do we do if the body travels with accele­
ration?

TEACHER: In this case the choice of the directions of re­
solution depends on the direction in which the body is being
accelerated (direction of the resultant force). Forces should
be resolved in a direction along the acceleration.and in one
perpendicular to it. The algebraic sum of the force components
in the direction perpendicular to the acceleration is equated
to zero, while that of the force components in the direction
along the acceleration is equal, accordingto Newton's second
law of motion, to the product of the mass of the body by its
acceleration.

Let us return to the body on the inclined plane in the last
problem and assume that the body slides with a certain acce­
leration up the plane. According to my previous remarks, the
forces should be resolved as in the case shown in Fig. 27b.
Then, in place of equations (22), we can write the following
system

N~Pcosa-Fsina=O }
a (23)

F cos a-F,,-Psina= ma= P g

Making use ofequation (5), we find the acceleration of the
body

a= ~ [Fcosa-(Pcosa+Fsina)k-Psinal

STUDENT: In problems of this kind dealing with accelera­
tion, can the forces be resolved in directions other than
along the acceleration and perpendicular to it? As far as I
understand from your explanation, this should not be done.

TEACHER: Your question shows that I should clear up some
points. Of course, even in problems on acceleration you have
a right to resolve the forces in any two mutually perpendicu­
lar directions. In this case, however, you will have to resolve
not only the forces, but the acceleration vector as well. This
method of solution will lead to additional difficulties. To
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avoid unnecessary complications, it is best to proceed exactly
as 1 advised. This is the simplest course. The direction of the
body's acceleration is always known (at least its sign), so
you can proceed on the basis of this direction. The inability
of examinees to choose the directions of force resolution
rationally is one of the reasons for their helplessness in solv­
ing more or less 'complex problems in dynamics.

STUDENT: We have only been speaking about resolution in
two directions. In the general case, however, it would pro­
bably be more reasonable to speak of resolution in three
mutually perpendicular directions. Space is actually three­
dimensional.

TEACHER: You are absolutely right. The two directions in
our discussions are explained by the fact that we are dealing
with plane (two-dimensional) problems. In the general case,
forces should be resolved in three directions. All the remarks
made above still hold true, however. I should mention that,
as a rule, two-dimensional problems are given in examina­
tions. Though, ofcourse, the examinee may be askedto makea
not-too-complicated generalization for the three-dimensional
case.

1

PROBLEMS
8. A body with a mass of 5 kg is pulled along a horizontal plane by a

force of 3 kgf applied to the body at an angle of 30° to the horizontal. The
coefficient of sliding friction is 0.2. Find the velocity of the body 10 seconds
after the pulling force begins to act, and the work ,
done by the friction force during this time.

9. A man pulls two sleds tied together by
applying a force of F= 12 kgf to the pulling rope
at an angle of 450 to the horizontal (Fig.28). The
masses of the sleds are equal to ml=m2=15kg.
The coefficient of friction between the runners and
the snow is 0.02. Find the acceleration of the sleds,

Fig. 28 Fig. 29

the tension of the rope .tying the sleds together, and the force with
which the man should pull the rope to impart uniform velocity to the sleds.

10. Three equal weights of a mass of 2 kg each are hanging on a string
passing over a fixed pulley as shown in Fig. 29. Find the acceleration of
the system and the tension of the string connecting weights 1 and 2.
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11. Calculate the acceleration of the weights and the tension In the
strings for the case illustrated in Fig. 30. Given: a=30°, P1=4 kgf, P2=
=2 kgf, and Ps=8 kgf. Neglect the friction between the weights and the
inclined plane.

Fig. 30

P,

Fig. 31

12. Consider the system of weights shown in Fig. 31. Here Pl= 1 kgf,
P2=2 kgf, Ps=5 kgf, P4=0.5 kgf, and a=30°. The coefficient of friction
between the weights and the planes equals 0.2. Find the acceleration of
the set of weights, the tension of the strings and the force with which
weight P4 presses downward on weight Pa.



§ 7.

ARE PROBLEMS IN

DYNAMICS MUCH MORE

DIFFICULT TO SOLVE IF

FRICTION IS TAKEN

INTO ACCOUNT?

TEACHER: Problems may be­
come much more difficult when
the friction forces are taken into
account.

STUDENT: But we have already
discussed the force of friction
(§3). If a body is in motion, the
friction force is determined from
the bearing reaction (F,r=kN);
if the body is at rest, the friction
force is equal to the force that
tends to take it out of this state
of rest. All this can readily be
understood and remembered.

TEACHER: That is so. However,
you overlook one important fact.
You assume that you already

know the answers to the following questions: (1) Is the body
moving or is it at rest? (2) In which direction is the body mov­
ing (if at all)? If these items are known beforehand, then the
problem is comparatively simple. Otherwise, it may be very
complicated from the outset and may even require special
investigation.

STUDENT: Yes, now I recall that we spoke of this matter in
§ 2 in connection with our discussion concerning the choice of
the direction of the friction force.

TEACHER: Now I want to discuss this question in more de­
tail. It is my firm opinion that the difficulties involved in

, solving problems which take the friction force into account
are obviously underestimated both by students and by certain
authors who think up problems for physics textbooks.

Let us consider the example illustrated in Fig. 10. The
angle of inclination ex of the plane, weight P of the body, force
F and the coefficient of friction k are given. For simplicity
we shall assume that ko:=ak (where k ois the coefficient determin­
ing the maximum possible force of static friction). I t is re­
quired to determine the kind of motion of the body and to find
the acceleration.

Let us assumethat the body slides upward along the inclined
surface. We can resolve the forces as shown in Fig. 27b and
make use of the result obtained for the acceleration in §6 .Thus

a = ~ [F cos ex-P sln ex-(P cos ex + F sin ex) k] (24)
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It follows from ~qu~tion (24) that for the body to slide up­
ward along the inclined plane, the following condition must
be complied with:

F cosa-P sin a-(P cosa+F sin «) k~ 0

This condition can be written in the form

F~P kcosa+s~na
~ ·cos a-k SIna

or
F~ P k+tan a

e-: l-ktan a (25)

.
We shall also assume that the angle of inclination of the
plane is not too large, so that (l-k tan a»O, or

1
tan a < Ii (26)

We shall next assume that the body slides downward along the
inclined plane. We again resolve all the forces as in Fig. 27b
but reverse the friction force. As a result we obtain the fall o­
wing expression for the acceleration of the body

a= ~ [Psino:-Fcoso:-(Pcosa+Fsina)k] (27)

From equation (27) it follows that for the body to slide down­
ward along the inclined plane, the following condition must
be met:

P sin a-F cos a-(P cos a +F sin a) k~ 0

This condition we write in the form

F~P sina-kcosa
"'= cos a+k sin a

or
tan a-k

F ~ P 1+k tan a (28)

In this case, we shall assume that the angle of inclination
of the plane is not too small, so that (tan a-k»O, or

tan a > k (29)

Combining conditions (25), (26), (28) and (29), we can come to
the following conclusions:
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1. Assume that the condition
1

k < tan « < k

holds good for an inclined plane. Then:
(a) if F>P (k+lana)/ (I-k tan a), the body slides upward

with an acceleration that can be determined by equation (24);
(b) if F=P (k+tana)/ (l-k tanc), the body slides upward

at uniform velocity or is at rest;
(c) if F<P (tan a-k)/ (I +k tan a), the body slides down­

ward with an acceleration that can be determined by equa­
tion (27);

(d) if F=P (tan a-k)/ (I +k tan a), the body slides down­
ward with uniform velocity or is at rest;

(e). if P(tan a-k)/(I+k tan a)<F<P(k+tan a)/(I­
-k tan a), the body is at rest.

Note that upon increase in force F from P (tan a-k)/ (I+
+k tan a) to P (k+tan a)/ (I-k tan a), the force of static
friction is gradually reduced from k (P cosa+F sin ex) to zero;
then, after its direction is reversed, it increases to the value
k (P cos a+F sin ex). While this goes on the body remains at
rest.

2. Now assume that the inclined plane satisfies the condition

0< tan a, ~k

then:
(a) if F>P (k+tan a)/ (l-k tan a), the body slides upward

with an acceleration that can be determined by equation (24);
(b) if F=P (k+tan a)/ (I-k tan a), the body slides upward

at uniform velocity or is at rest;
(c) if F<P (k+tan a)/ (I-k tan ex), the body is at rest;

no downward motion of the body along the inclined plane is
possible (even if force F vanishes).

3. Finally, let us assume that the inclined plane meets
the condition

then:
(a) if F<P (tan a-k)/ (I+k tan a), the body slides down­

ward with an acceleration that can be determinedby equation
(27);

(b) if F=P (tan a-k)/ (1 +k tan a), the body slides down­
ward with uniform velocity or is at rest;
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(c) if F>P (tan a-k)I (1 +k tan a), the body is at rest;
no upward motion of the body along the inclined plane is
possible. On the face of it, this seems incomprehensible be­
cause force F can be increased indefinitelyl The inclination
of the plane is so large, however, that, with an increase in
force F, the pressure of the body against the plane will in­
crease at an even faster rate.

STUDENT: Nothing of the kind has ever been demonstrated
to us in school.

TEACHER: That is exactly why I wanted to draw your
attention to this matter. Of course, in your entrance examina­
tions you will evidently have to deal with much simpler cases:
there will be no friction, or there will be friction but the
nature of the motion will be known beforehand (for instance,
whether the body is in motion or at rest). However, even if
one does not have to swim over deep spots, it is good to know
where they are.

STUDENT: What will happen if we assume that k=O?
TEACHER: In the absence of friction, everything becomes

much simpler at once. For any angle of inclination of the
plane, the results will be:

at F>P tan (x, the body slides upward with the acceleration

a= ~ (F cos a-P sin a) (30)

at F=P tan (x, the body slides with uniform velocity (up­
ward or downward) or is at rest;

at F<P tan (x, the body slides downward with an accele­
ration

a=~(Psina-Fcosa) (31)

Note that the results of equations (30) and (31) coincide with
an accuracy to the sign. Therefore, in solving problems, you
can safely assume any direction of motion, find a and take
notice of -the sign of the acceleration. If a>O, the body tra­
vels in the direction you have assumed; if a<O, the body
will travel in the opposite direction (the acceleration will
be equal to laD.

Let us consider one more problem. Two bodies PI and P 2

are connected by a string running over a pulley. Body PI is on
an inclined plane with the angle of inclination ct and coeffi­
cient of friction k; body P 2 hangs on the string (Fig. 32).
Find the acceleration of the system.
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Assume that the system is moving from left to right. Con..
sidering the motion of the system as a whole, we can write
the following equation for the acceleration:

(32)

Assuming now that the system moves from right to left, we
obtain .

(33)

should be met. Equation (33) irn­
~ plies that for motion from right to

left the necessary condition is

~ 1
p~ sina-kcosa

Fig. 32

We will carry out an investigation for the given a, and k
values, varying the ratio p=P 21Pt • From equation (32) it

follows that for motion from left to
right, the condition

~ I"
p~ sin ce-j-e cos c

Here an additional condition is required: the angle of in­
clination should not be too small, i.e. tan a,>k. If tan a~k,

then the system will not move from right to left, however
large the ratio p may be.

If tan a>k, the body is at rest provided the following ine­
quality holds true:

'I 1
sin a+k cosa < p < sin a-k cos a

If, instead, tan a~k, then the body is at rest at

1
p ;» sin ce-j-e cos c

STUDENT: And what will happen if we change the angle ex
or the coefficient k?

TEACHER: I leave investigation from this point of view to
you as a home assignment (see Problems Nos. 13 and 14).
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PROBLEMS
13. Investigate the problem illustrated in Fig. 32 assuming that the

angle a of Inclination of the plane and the ratio P=P2/Pl are given, and
assigning various values to the coefficient k.

14. Investigate the problem illustrated in Fig. 32, assuming that the
coefficient of friction k and the ratio P=P 2/P1 are given and assigning
various values to the angle a of inclination of the plane. For the sake of
simplicity, use only two values of the ratio: p= 1 (the bodies are of equal
weight) and p= 1/2 (the body on the inclined plane is twice as heavy as
the one suspended on the string).



Motion in a circle is the simplest form of curvilinear motion.
The more important it is to comprehend the specific features
of such motion. You can see that the whole universe is made
up of curvilinear motion. Let us consider uniform and nonuni­
form motion of a material point in a circle, and the motion
of orbiting satellites. This will lead us to a discussion of the
physical causes of the weightlessness of bodies.



§ 8..

HOW DO YOU DEAL

WITH MOTION

IN A CIRCLE?

TEACHER: I have found from
experience that questions and
problems concerning motion of
a body in a circle turn out to
be extremely difficult for many
examinees.Their answers to such
questions contain a great many
typical errors. To demonstrate
this let us invite another student
to take part in our discussion.
This student doesn't know what
we have discussed previously.
We shall conditionally call him
"STUDENT B" (the first student
will hereafter be called "STU­
DENT A").

Will Student B please indicate the forces acting on a
satellite, or sputnik, in orbit around the earth? We will agree
to neglect the resistance of the atmosphere and the attra­
ction of the moon, sun and other celestial bodies.

STUDENT B: The satellite is subject to two forces: the at­
traction of the earth and the centrifugal force.

TEACHER: I have no objections to the attraction of the
earth, but I .don't understand where you got the centrifugal
force from. Please explain.

STUDENT B: If there were no such force, the satellite could
not stay in orbit.

TEACHER: And what would happen to it?
STUDENT B: Why, it would fall to the earth.
TEACHER (turning to Student A): Remember what I told

you before! This is a perfect example of an attempt to prove
that a certain force exists, not on the basis of the interaction of
bodies, but by a backdoor manoeuvre-from the nature of the
motion of bodies. As you see, the satellite must stay in orbit,
so it is necessary to introduce a retaining force. Incidentally,
if this centrifugal force really did exist, then the satellite
could not remain in orbit because the forces acting on the
satellite would cancel out and it would fly at uniform velocity
and in a straight line.

STUDENT A: The centrifugal force is never applied to a
rotating body. It is applied to the tie (string or another bon­
ding member). It is the centripetal force that is applied to
the rotating body.
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STUDENT B: Do you mean that only the weight is applied
to the satellite?

TEACHER: Yes, only its weight.
STUDENT B: And, nevertheless, it doesn't fall to the earth?
TEACHER: The motion of a body subject to the force of

gravity is called falling. Hence, the satellite is falling. Ho­
wever, its "falling" is in the form of motion in.a circle around
the earth and therefore can continue indefinitely. We have
already established that the direction of motion of a body and
the forces acting on it do not necessarily coincide (see § 4).

STUDENT B: In speaking of the attraction of the earth and
the centrifugal force, I based my statement on the formula

GmM mv2

-,r--r- (34)

where the left-hand side is the force of attraction (m=mass
of the satellite, M =mass of the earth, r=radius of the or­
bit and G=gravitational constant), and the right-hand side
is the centrifugal force (v=velocity of the satellite). Do you
mean to say that this formula is incorrect?

TEACHER: No, the formula is quite correct. What is incor­
rect is your interpretation of the formula. You regard equation
(34) as one ofequilibrium between two forces. Actually, it
is an expression of Newton's second law of motion

F= rna (34a)

where F=GmM/r 2 and a=v 2/r is the centripetal acceleration.
STUDENT B: I agree that your interpretation enables us to

get along without any centrifugal force. But, if there is no
centrifugal force, there must at least be a centripetal force.
You have not, however, mentioned such a force.

TEACHER: In our case, the centripetal force is the force of
attraction between the satellite and the earth. I want to
underline the fact that this does not refer to two different
forces. By no means. This is one and the same force.

STUDENT B: Then why introduce the concept of a centri­
petal force at all?

TEACHER: I fully agree with you on this point. The term
"centripetal force", in my opinion, leads to nothing but con­
fusion. What is understood to be the centripetal force is
not at all an independent force applied to a body along with
other forces. It is, instead, the resultant of all the forces
applied to a body travelling in a circle at uniform velocity.
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The quantity mv2/r is not a force. It represents the product of
the mass m of the body by the centripetal accelerationv2/r.

This acceleration is. directed toward the centre and, conse­
quently, the resultant of all forces, applied to a body tra­
velling in a circle at uniform velocity, is directed toward the
centre. Thus, there is a centripetal acceleration and there
are forces which, added together, impart a centripetal acce­
leration to the-body.

STUDENT B: I must admit that this approach to the motion
of a body in a circle is to my liking. Indeed, this motion is
not a static case, for which an equilibrium of forces is cha­
racteristic, but a dynamic case.

STUDENT A: If we reject the concept of a centripetal force,
then we should pr.obably drop the term "centrifugal force" as
well, even in reference to ties.

TEACHER: The introduction of the term "centrifugal force"
is even less justified. The centripetal force actually exists,
if only as a resultant force. The centrifugal force does not
even exist in many cases.

STUDENT A: I don't understand your last remark. The cent­
rifugal force is introduced as a reaction to the centripetal
force. If it does not always exist, as you say, then Newton's
third law of motion is not always valid. Is that so?

I
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TEACHER: Newton's third law is valid only for real forces
determined by the interaction of bodies, and not for the
resultants of these forces. I can demonstrate this by the
example of the conical pendulum that you are already familiar
with (Fig. 33). The ball is subject to two forces: the weight P
and the tension T of the string. These forces, taken together,
provide the centripetal acceleration of the ball, and their sum
is called the centripetal force. Force P is due to the inter­
action of the ball with the earth. The reaction of this force
is force P 1 which is applied to the earth. Force T results
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from interaction between the ball and the string. The reaction
of this force is force T 1 which is applied to the string. If
forces PI and T 1 are formally added together we obtain a force
which is conventionally understood to be the centrifugal force
(see the dashed line in Fig". 33). But to what is this force
applied? Are we justified in calling it a force when one of
its components is applied to the earth and the other to an
entirely different body-the string? Evidently, in the given
case, the concept of a centrifugal force has no physical mean­
ing.

STUDENT A: In what cases does the centrifugal force exist?
TEACHER: In the case of a satellite in orbit, for instance,

when only two bodies interact-the earth and the satellite.
The centripetal force is the force with which the earth attracts
the satellite. The centrifugal force is the force with which
the satellite attracts the earth.

STUDENT B: You said that Newton's third law was not va­
lid for the resultant of real forces. I think that in this case
it will be invalid also for the components of a real force. Is
that true?

TEACHER: Yes, quite true. In this connection I shall cite
an example which has nothing in common with rotary motion.
A ball lies on a floor and touchesa wall which makesan obtuse
angle with the floor (Fig. 34). Let us resolve the weight of
the ball into two components: perpendicular to the wall and
parallel to the floor. We shall deal with these two components
instead of the weight of the ball. If Newton's third law were
applicable to separate components, 'we could expect a reaction
of the wall counterbalancing the component of the weight
perpendicular to it. Then, the componentof the weight parallel
to the floor would remain unbalanced and the ball would have
to have a horizontal acceleration. Obviously, this is physical­
ly absurd.

STUDENT A: SO far you have discussed uniform motion in a
circle. How do you deal with a body moving nonuniformly in
a circle? For instance, a body slides down from the top of a
vertically held hoop. While it slides along the hoop it is
moving in a circle. This cannot, however, be uniform motion
because the velocity of the body increases. What do you, do in
such cases?

TEACHER: If a body moves in a circle at uniform velocity,
the resultant of all forces applied to the body must be di­
rected to the centre; it imparts centripetal acceleration to
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the" body. In the more general case of nonuniform motion in a
circle, the resultant force is not directed strictly toward
the centre. In this case, it has a component along a radius
toward the centre and another corpponent tangent to the trajec­
tory of the body (Le. to the circle). The first component is
responsible for the centripetal acceleration of the body, and
the second component, for the so-called tangential acceleration,
associated with the change in velocity. It should be pointed
out that since the velocity of the body changes, the centri­
petal acceleration v2/r must also change.

STUDENT A: Does that mean that for each instant of time
the centripetal acceleration will be determined by the formula
a=v 2/r, where v is the instantaneous velocity? "

TEACHER: Exactly. While the centripetal acceleration is
constant in uniform motion in a circle, it varies in the process
of motion in nonuniform motion in a circle.

STUDENT A: What doesone do to find out just how the velo­
city v varies in nonuniform rotation?

TEACHER: Usually, the law of conservation of energy is
resorted to for this purpose. Let us consider a specific example.
A ssume that a body slides
without friction from the top B
of a vertically held hoop of
radius R. With what force will (a)

the body press on the hoop as
it passes a point located at a
height h em below the top of

Fi.g. 35 Fig. 36

the hoop? The initial velocity of the body at the top of the hoop
equals zero. First of all, it is necessary to find what forces
act on the body.

STUDENT A: Two forces act on the body: the weight P and
the bearing reaction N. They are shown in Fig. 35.

TEACHER: Correct. What are you going to do next?
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STUDENT A: I'm going to do as you said. I shall find the
resultant of these twoforces and resolve it into two components:
one along the radius and the other tangent to the circle.

TEACHER: Quite right. Though it would evidently be simp­
ler to start by resolving the two forces applied to the body in
the two directions instead of finding the resultant, the more so
because it will be necessary to resolve only one force-the
weight.

STUDENT A: My resolution of the forces is shown in Fig. 35.
TEACHER: Force P 2 is responsible for the tangential accele­

ration of the body, it does not interest us at present. The
resultant of forces PI and N causes the centripetal accelera­
tion of the body, i.e.

mv2

P-N=-
1 R (35)

(36)
2

Ph-~- 2

The velocity of the body at the point we are interested' in
(point A in Fig. 35) can be found from the law of conservation
of energy

Combining (35) and (36) and taking into consideration that
p l=P cos a=P (R-h)/R, we obtain

!:..(R-h) -N = 2Ph
R R

The sought-for forcewith which the body presseson the hoop is
equal, according to Newton's third law, to the bearing reaction

N=pR R3h (37)

STUDENT B: You assume that at point A the body is still
on the surface of the hoop. But it may fly off the hoop before
it gets to point A.

TEACHER: We can find the point at which the body leaves
the surface of the hoop. This point corresponds to the extreme
case when the force with which the body presses against the
hoop is reduced to zero. Consequently, in equation (37), we
assume N=O and solve for h, i.e, the vertical distance from
the top of the hoop to the point at which the body flies off.
Thus

ho= ~ (38)
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(40)

(39)

If in the problem 8S stated the value of h complies with the
condition h<hot then the result of equation (37) is correct;
if, instead, h~ho, then N=O.

STUDENT A: As far as I can make out, two physical laws,
equations (35) and (36), were used to solve this problem.

TEACHER: Very good that you point this out. Quite true,
two laws are involved in the solution of this problem: Newton's
second law of motion [seeEq. (35)] and the law of conservation
of energy '[see Eq. (36)]. Unfortunately, examinees do not
always clearly understand just which physical laws they emp­
loy in solving some problem or other. This, I think, is an es­
sential point.

Take, for instance, the following example, An initial
velocity Vo is imparted to a body so that it can travel from
point A to point C. Two alternative paths leading from A toC
are offered (see Fig. 36a and b). In both cases the body must
reach the same height H, but in different ways. Find the mini­
mum initial velocity Vo for each case. Friction can be neglected.

STUDENT B: I think that the minimum initial velocity I

should be the same in both cases, because there is no friction
and the same height is to be reached. This velocity can be
calculated from the law of conservation of energy

mv2
----

mgH=--f from which V,,= V2gH

TEACHER: Your answer is wrong. You overlooked the fact
that in the first case, the body passes the upper point of its
trajectory when it is in a state of rotational motion. This
means that at the top point B (Fig. 36a) it will have a velo­
city VI determined from a dynamics equation similar to equa­
tion (35). Since the problem involves the finding of a mini­
mum, we should consider the extreme case when the pressure
of the body on its support at point B is reduced to zero. Then
only the weight will be acting on the body and imparting to
it the centripetal acceleration. Thus

mvi 2mvi
mg=T=ff

Adding to the dynamics equation (39) the energy equation
2 2

mvo mV1+ H-2-=-2- mg

we find that the minimum initial velocity equals. VSgH /2.
In the second case, the body may pass the top point at a ve-
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(42)

locity infinitely close to zero and so we can limit ourselvesto
the energyequation. Then your answer is correct.

STUDENT B: Now I understand. If in the first case the body
had no velocity at point B, it would simply fall off its track.

TEACHER: If in the first case the body had the initial
velocity vo=V2gH as you suggested, it would never reach
point B but would fall away from the track somewhat earlier.
J 'propose that you find the height h of the point at which the

body would fall away from the
B A. track if its initial velocity was

vo=V2gH.
STUDENT A: Please let me try to

do this problem.
TEACHER: Certainly.
STUDENT A: At the point the body

drops off the track the bearing rea..
Fig. 37 ction is evidently equal to zero.

Therefore, only the weight acts on
the body at this point. We can resolve the weight into two
components, one along the radius (mg cos a) and the other
perpendicular to the radius (mg sin a) as shown in Fig. 37
(point A is the point at which the body falls away from the
track). The component along the radius imparts a centri­
petal acceleration to the body, determined by the equation

mv;
mgcos a= -R (41)

where V2 is the velocity of the body at point A. To find it
we can make use of the energy equation

2· 2
mV2 + h mvo-2- mg =-2-

Combining the dynamics (41) and energy (42) equations, tak­
ing into consideration that cos a= (h-R)/R, we obtain

mg(h-R)= mv~-2mgh

from which
n-. 2v~+gH

6g

After substituting v~=2gH the final result is
5

h=r;H

3*

(43)
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TEACHER: Entirely correct. Note that you can use equation
(43) to find the initial velocity Vo for the body to loop the
loop. For this we take h=H in equation (43). Then

H _ 2v~+gH
- 6g

From this we directly obtain the result previously determined

v = .,. /" 5gH
o V 2

STUDENT A: Condition (43) was obtained for a body falling
off its track. How can it be used for the case in which the
body loops the loop without falling away?

TEACHER: Falling away at the very top point of the loop
actually means that the body does not fall away 'but passes
this point, continuing its motion in a circle.

STUDENT B: One could say that the body falls away as if
only for a single instant.

TEACHER: Quite true. In conclusion I propose the following
problem. A body lies at the bottom of an inclined plane with
an angle of inclination a. This plane rotates at uniform an­
gular velocity ro about a vertical axis. The distance from the
body to the axis of rotation of the plane equals R. Find the
minimum coefficient k o (I remind you that this coefficient
characterizes the maximum possiblevalue of the force of sta­
tic friction) at which the body remains on the rotating inclined
plane (Fig. 38a) without sliding off.

Let us begin as always with the question: what forces are
applied to the body?

STUDENT A: Three forces are applied to the body: the weight
P, bearing reaction N, and the force of friction FIre

TEACHER: Quite correct. It's a good thing that you didn't
add the centripetal force. Now what are you going to do next?

STUDENT A: Next, I shall resolve the forces in the directions
along the plane and perpendicular to it as shown in Fig. 38b.

TEACHER: I'll take the liberty of interrupting you at this
point. I don't like the way you have resolved the forces. Tell
me, in what direction is the body accelerated?

STUDENT A: The acceleration is directed horizontally. It
is centripetal acceleration.

TEACHER: Good. That is why you should resolve the forces
horizontally (i.e. along the acceleration) and vertically (i.e.
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(44)

(C)

rbJ

N(cosex+kosina)=P }
NCOSd N(kocosex-sinex)=Pw2Rg
Frr sind / STUDENT B: You have only
--- Ffr

d' two equations and three un-
~~~.... Fff' COSd k k P d Nnowns: 0, an .

TEACHER: That is no obstacle.
We don't have to find all three
unknowns, only the coefficient k o•

The unknowns P and N can be
po p 38 easily eliminated by dividing the

19. first equation by the second.
STUDENT A: After dividing we obtain

cos a+ko sin a g
ko cos a- sin a = (j)2R

which we solve for the required coefficient
k _ (j)2R cos cx+g sin a
0- gcosa-(j)2Rsina

perpendicular to the acceleration). Remember what we dis­
cussed in § 6.

STUDENT A: Now I understand. The resolution of the forces
in the horizontal and vertical directions is shown in Fig. 38c.
The vertical components of the forces counterbalance one

fa) another, and the horizontal com­
ponents impart. acceleration to
the body. Thus

N cos ex +FIr sin ex = P }
. mv2

FJr cos ex-N Sin a = R .

Taking into consideration that
Ffr=k oN ,v2

/ R=w 2R and m=P/g,
we can rewrite these equations in
the form

TEACHER: It is evident from equation (44) that the condi­
tion

(g cosex- (J)2R sin ex) > 0

should hold true. This condition can also be written in the
form

tan « < Ci)~R (45)
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If condition (45) is not complied with, no friction force
is capable of retaining the body on the rotating inclined
plane.

PROBLEMS
15. What is the ratio of the forces with which an army tank bears down

on the middle of a convex and of a concave bridge? The radius of curvature
of the bridge is 40 m in both cases and the speed of the tank is 45 km per hr.

16. A body slides without
friction from the height
H=60 em and then loops the
loop of radius R=20 ern
(Fig. 39). Find ,the ratio of the

:t; forces with wnich the body
bears against the track at
points A, Band C.

17. A body can rotate in
A a vertical plane at the end

of a string of length R. What
Fig. 39 horizontal velocity should be

imparted to the body in the
top position so that the tension of the string in the bottom position
is ten times as great as the weight of the body?

18. Calculate the density of the substance of a spherical planet if
a satellite rotates about it with a period T in a circular orbit at a
distance from the surface of the planet equal to one half of its radius
R. The gravitat ional constant is denoted by G.

Fig. 40 Fig. 41

19. A body of mass m can slide without friction along a trough
bent in the form of a circular arc of radius- R. At what height h will
the body be at rest if the trough rotates at a uniform angular veloci­
ty ro (Fig. 40) about a vertical axis? What force F does the body exert
on the trough?

20. A hoop of radius R is fixed vertically on the floor. A body
slides without friction from the top of the hoop (Fig. 41). At what
distance 1 from the point where the hoop is fixed will the body fall?



§ 9.

HOW DO YOU EXPLAIN

THE WEIGHTLESSNESS

OF BODIES?

TEACHER: How do you unders­
tand the expression: "At the
equator of a. planet, a body weighs
less than at the poles"?

STUDENT B: I understand it
as follows. The attraction of a
body by the earth is less at the
equator than at the poles for
two reasons. In the first place,
the earth is somewhat flattened
at the poles and therefore the dis­
tance from the centre of the earth
is somewhat less to the poles than
to the equator. In the second pla­
ce, the earth rotates about its
axis as a result of which the force
of attraction at the equator is

weakened due to the centrifugal effect.
STUDENT A: Please make your last remark a little clearer.
STUDENT B: You must subtract the centrifugal force from

the force of attraction.
STUDENT A: I don't agree with you. Firstly, the centri fugal

force is not applied to a body travelling in a circle. We al­
ready discussed that in the preceding section (§ 8). Secondly,
even if such a force existed it could not prevent the force of
attraction from being exactly the same as if there was no
rotation of the earth. The force of attraction equals GmM/r 2'

and, as .such, does not change just because other forces may
act on the body.

TEACHER: As you can see, the question of the "weightness of
bodies" is not as simple as it seems at first glance. That's
why it is among the questions that examinees quite frequently
fail to answer correctly. As a matter of fact, if we agree on
the definition that the "weight of a body" is the force with
which the body is attracted by the earth, i.e, the force
GmM/r 2

, then the reduction of weight at the equator should be
associated only with the flattening at the poles (or bulging
at the equator).

STUDENT B: But you cannot disregard rotation of th-e earthl
TEACHER: I fully agree with you. But first I wish to point

out that usually, in everyday life, the "weight of a body" is
understood to be, not the force with which it is attracted to
the earth, and this is quite logical, but the force measured
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by a spring balance, i. e. the force with which the body bears
against the earth. In other words, the bearing reaction is
measured (the force with which a body bears against a support
is equal to the bearing reaction according to Newton's third
law). It follows that the expression "a body weighs less at the
equator than at the poles" means that at the equator it bears
against its support with' a lesser force than at the poles.

Let us denote the force of attraction at the poles by P t
and at the equator by P 2, the bearing reaction at the poles
by N t and at the equator by N 2. At the poles the body is
at rest, and at the equator it travels in a circle. Thus

PI-Nt =0

P2- N2=macp

where acp is the centripetal acceleration. We can ,rewrite
these equations in the form ':1~

(46)

Here it is clear that N 2 is less than N i since, firstly, P 2 is
less than PI (from the effect of the flattening at t~. poles)
and, secondly, we subtract from P 2 the quantity n&.~p (the
effect of rotation of the earth). '

STUDENT B: SO, the expression "a body has lost half of its
weight" does not mean that the force with which it is attracted
to the earth (or any other planet) has been reduced by one
half?

TEACHER: No, it doesn't. The force of attraction may not
change at all. This expression means that the force with which
the body bears against its support (in other words, the bearing
reaction) has been reduced by one half.

STUDENT B: But then it follows that I can dispose of the
"weightness"of a body quite freely. What can prevent me from
digging a deep pit under the body and lettlngit fall into the
pit together with its support? In this case, there will be no
force whatsoever bearing on the support. Does that mean that
the body has completely "lost its weight"? That it is in a
state of weightlessness?

TEACHER: Youhave independently cometo the correct con­
clusion. As a matter of fact, the state of weightlessness is a
state of fall of a body. In this connection I wish to make
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several remarks. I have come across the interpretation of
weightlessness as a state in which the force of attraction of
the earth is counterbalanced by some other force. In the case
of a satellite, the centrifugal .force was suggested as this
counterbalancing force. The statement was as follows: the
force with which the satellite is attracted by the earth and
the centrifugal force counterbalance each other and, as a
result, the resultant force applied to the sateIIite equals
zero, and this corresponds to weightlessness.

You now understand, of course, that such a treatment is
incorrect if only because no centrifugal 'force acts on the
satellite. Incidentally, if weightlessness is understood to be
a state in which the force of attraction is counterbalanced by
some other force, then it would be more logical to consider a
body weightless when it simply rests on a horizontal plane.
This is precisely one of the cases where the weight is coun­
terbalanced by the bearing reaction! Actually, no counter­
balar "ing of the force of attraction is required for weight­
lessne.s. On the contrary, for a body to become weightless, it
is necessary to provide conditions in which no other force
acts on it except attraction. In other words, it is necessary
that the bearing reaction equal zero. The motion of a body
subject to the force of attraction is the falling of the body.
Consejuently, weightlessness is a state of falling, for example
the falling of a lift in a mine shaft or the orbiting of the earth
by a satellite.

STUDENT A: In the preceding section (§ 8) you mentioned
that the orbiting of a satellite about the earth is none other
than its falling to the earth for an indefinitely long per iod
of time.

TEACHER: That the motion of a satellite about the earth
is falling can be shown very graphically in the following way.
Imagine that you are at the top of a high mountain and throw
a stone horizontally. We shall neglect the air resistance. The
greater the initial velocity of the stone, the farther it wi11
fall. Figure 42a illustrates how the trajectory of the stone

.gradually changes with an increase in the initial velocity.
At a certain velocity v 1 the trajectory of the falling stone
becomes a circle and the stone becomes a satellite of the earth.
The velocity VI is called the circular orbital velocity. It is
found from equation (34)

VI = V G~ (47)
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If the radius r of the satellite's orbit is taken approximately
equal to the radius of the earth then v1~8 km per sec.

STUDENT A: What will happen if in throwing a stone from
the mountain top we continue to increase the initial velocity?

TEACHER: The stone will orbit the earth in a more and more
elongated ellipse (Fig. 42b). At a certain velocity V 2 the
trajectory of the stone becomes a parabola and the stone
ceases to be a satellite of the earth. The velocity V 2 is called

the escape velocity. According
to calculations, v 2 is appro­
ximately 11 km per sec. This
is about V2 times v 1·

STUDENT A: You have deft-
v, ned the state of weightlessness

as a state of fall. However, if
the initial velocity of the stone
reaches the escape velocity,
the stone will leave the earth.
In this case, you cannot say
that it is falling to the earth.
How, then, can you interpret
the weightlessnessof the stone?

(6) TEACHER: Very simply.
Weightlessness in this case is
the falling of the stone to the
sun.

STUDENT A: Then the
lJ2 weightlessness of a spaceship

located somewhere in inter­
stellar space is to be associated
with the falling of the ship
in the gravitational field
of some celestial body?

TEACHER: Exactly.
Fig. 42 STUDENT B: Still, it seems

to me that the definition of
weightlessness as a state of falling requires some refinement.
A parachutist also falls, but he has none of the sensations
associated with weightlessness.

TEACHER: You are right. Weightlessness is not just any
kind of falling. Weightlessness is the so-called free fall, i.e,
the motion of a body SUbject only (I) to the force of gravity.
I have already mentioned that for a body to becomeweightless
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it is necessary to create conditions under which no other
force, except the force of attraction, acts on the body. In
the case of the fall of a parachutist, there is an additional
force, the resistance of the air.

PROBLEM
21. Calculate the density of the substance of a spherical planet where

the daily period of rotation equals 10 hours, if it is known that bodies are
weightless at the equator of the planet.



M

the physical laws of conservation can scarcely be
.ed. They constitute the most general rules estab­
iankind on the basis of the experience of many
. Skillful application of the laws of conservation
ny problems to be solved with comparative ease.
nsider examples concerning the laws of conser­
energy and momentum.



§ 10.

CAN YOU APPLY

THE LAWS

OF CONSERVATION

OF ENERGY AND LINEAR

MOMENTUM?

TEACHER: To begin with I wish
to propose several simple prob­
lems. The first problem: Bodies
slide without friction down two
inclined planes of equal height H
but with two different angles of
inclination a 1 and a 2. The ini­
tial velocity of the bodies equals
zero. Find the velocities of the
bodies at the end of their paths.
The second problem: We know
that the formula expressing the
final velocity of a body in terms
of the acceleration and distance
travelled v=V2as refers to the
case when there is no ini tial oelo-

. city. What will this formula be if
the body has an initial velocity vo? The third problem: A bOdy
is thrown from a height H with a horizontal velocity of v.,~

Find its velocity when it reaches the ground. The fourth profJ
lem: A body is thrown upward at an angle a to thehorizontal
with an initial velocity Vo. Find the maximum height reached
in its flight.

STUDENT A: I shall solve the first problem in the following
way. We first consider one of the inclined planes, for instance
the one with the angle of inclination a 1. Two forces are ap­
plied to the body: the force of gravity P and the bearing
reaction N 1. We resolve the force P into two components, one
along the plane (P sin a 1) and the other perpendicular to it
(P cos a 1). We then write the equations for the forces per­
pendicular to the inclined plane

P cos a 1 - N 1~ 0
and for the forces along the plane

P
. Pal

Sinal=-­g

where a 1 is the acceleration of the body. From the second
equation we find that a 1=g sin a 1. The distance travelled
by the body is H /sin ex 1. Next, using the formula mentioned in
the second problem, we find that the velocity at the end of
the path is

JI' 2 .. / 2gH. sin a l === V2 H
VI = °l

S1 === V SIn a
1

g
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Since the final result does not depend upon the angle of inc­
lination, it is also applicable to the second plane inclined at
the angle a 2.

To solve the second problem I shall make use of the well­
known kinematic relationships

v=vo+at
at2

s=vot+ T
From the first equation we find that t= (v-vo)la. Substituting
this for t in the second equation we obtain .-

s = Vo (V-V'o) +!: (V-oo)2 •
a 2 a2

or
2sa= 2vov-2v~+ v2-2vvo+ v~

from which 2sa=V2_V~. The final result is

v= V2as+v~ (48)

To solve the third problem, I shall first find the horizontal
VI and vertical V2 components of the final velocity. Since
the body travels at uniform velocity in the horizontal direc­
tion, V 1=Vo. In the vertical direction the body travels with
acceleration g but has no initial velocity. Therefore,we can
use the formula v2=V2gH. Since the sum of the squares of
the sides of a right triangle equals ,the square of the hypote­
nuse, the final ans'Yer is

v=Vv~+v~ =Vv~+2gH (49)

The fourth problem has already been discussed in § 5. It
is necessary to resolve the initial velocity into the horizontal
(vo cos a) and vertical (vo sin a) components. Then we consi­
der the vertical motion of the body and, first of all, we find
the time t 1 of ascent from the formula for the dependence of
the velocity on time in uniformly decelerated motion (vv=
=V o sin a-gt), taking into account that at t=t 1 the verti­
cal velocity of the body vanishes. Thus Vo sin a-gt 1 =0,
from which t 1= (vo/g) sin a. The time t 1 being known, we find
the height H reached from the formula of the dependence of
the distance travelled on time in uniformly decelerated
motion. Thus
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TEACHER: In all four cases you obtained the correct ans­
wers. I am not, however, pleased with the way you solved
these problems. They could all have been solved much simpler
if you had used the law of conservation of energy. You

.can see for yourself.
First problem. The law of conservation of energy is of the

form mgH=mv 2/2 (the potential energy of the body at the
top of the inclined plane is equal to its kinetic energy at the
bottom). From this equation we readily find the velocity of
the body at the bottom

v=V2gH

Second problem. In this case, the law of conservation of
energy is of the form mv~/2+mas=mv2/2, where mas is the
work done by the forces in imparting the acceleration a to the
body. This leads immediately to v~+2as=v2 or, finally,' to

v=V2as+v~

Third problem. We write the law of conservation of energy
as mgH+mv~/2=mv2/2. Then the result is

v=V2gH+v~

Fourth problem. At the point the body is thrown its energy
equals mv~/2. At the top point of its trajectory, the energy
of the body is mgH+mv~/2. Since the velocity VI at the
top point equals Vo cosa, then, using the law of conservation
of energy

mv~ mv~-2-=mgH +-2-cos2a

we find that H=(v~/2g) (1-cos 2 a) or, finally

v~ •
H = 2gS1n2a

STUDENT A: Yes, it's quite clear to me that these problems
can be solved in a much simpler way. It didn't occur to me to
use the law of conservation of energy. ,

TEACHER: Unfortunately, examineesfrequently forget about
this law. As a result they begin to solve such problems by
more cumbersome methods, thus increasing the probability
of errors. My advice is: make more resourceful and extensive
use of the law of conservation of energy.
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This poses the question: how skillfully can you employ
this law?

stUDENT A: It seems to me that no special skill is required;
the law of conservation of energy as such is quite simple.

TEACHER: The ability to apply a physical law correctly is
not determined by its complexity or simplicity. Consider an
example. Assume that a body travels at uniform velocity in a
circle in a horizontal plane. No friction forces operate. The
body is subject to a centripetal force. What is the work done
by this force in one revolution of the body?

STUDENT A: Work is equal to the product of the force by
the distance through which it acts. Thus, in our .case, it equals
(mv2/R)2nR=2nmv2

, where R is the radius of the circle and
m and v are the mass and velocity of the body.

TEACHER: According to the law of conservation of energy;
work cannot completely disappear. What has become of the
work you calculated?

STUDENT A: It has been used to rotate the body.
TEACHER: I don't understand. State it more precisely.
STUDENT A: It keeps the body on the circle.
TEACHER: Your reasoning is wrong. No work at all is re­

quired to keep the body on the circle.
STUDENT A: Then I don't know how to answer your ques­

tion.
TEACHER: Energy imparted to a body can be distributed,

as physicists say, among the following "channels": (1) increas­
ing the kinetic energy of the body; (2) increasing its potential
energy; (3) work performed by the given body on other bodies;
and (4) heat evolved due to friction. Such is the general
principle which not all examinees understand with sufficient
clarity.

Now consider the work of the centripetal force. The body
travels at a constant velocity and therefore its kinetic energy
is not increased. Thus the first channel is closed. The body
travels in a horizontal plane and, consequently, its potential
energy is not changed. The second channel is also closed. The
given body does not perform any work on other bodies, so that
the third channel is' closed. Finally, all kinds of friction
have been excluded. This closes the fourth and last channel.

STUDENT A: But then there is simply no room for the work
of the centripetal force, or is there?

TEACHER: As you. see, none. It remains now for you to dec­
lare your position on the matter. Either you admit that the
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Fig. 43

(C)

law of conservation of energy is not valid, and then all
your troubles are gone, or you proceed from the validity of
this law and then .... However, try to find the way out of
your difficulties.

STUDENT A: I think that it remains to conclude that the
centripetal force performs no work whatsoever.

TEACHER: That is quite a logical conclusion. I want to
point out that' it is the direct consequence of the law of con­
servation of energy.

STUDENT B: All this is very well, but what do we do about
the formula for the work done by a body?

TEACHER: In addition to the force and the distance through
which it acts, this formula should also contain the cosine of
fa) the angle between the direction of the

force and the velocity
A=Fscos ex

In the given case, cos ex=O.
STUDENT· A: Oh yes, I entirely for­

got about this cosine.
TEACHER: I want -to propose anoth­

er example. Consider communicating
vessels connected by a narrow tube
with a stopcock. Assume that at- first­
all the liquid is in the left vessel and
its height is H (Fig. 43a)~. Then we
open the stopcock and the liquid flows
f rom the left into the right vessel. The
fl ow ceases when there is an equal
le vel of H /2 in each vessel (Fig. 43b).
Let us calculate the potential energy
of the liquid in the initial and final
positions. For this we multiply the
weight of the liquid in each vessel by
one half of the column of liquid. In
the initial position the potential energy
equalled PH /2, and in the final one it
is (P /2) (H /4) + (P /2) (H /4) = PH/4.
Thus in the final state, the potential

energy of the liquid turns out to be only one half of that in the
initial state. Where has one half of the energy disappeared to?

STUDENT A: I shall attempt to reason as you advised. The
potential energy PH/4 could be used up in performing work on
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other bodies, on heat evolved in friction and on the kinetic
energy of the liquid itself. Is that right?

TEACHER: Quite correct. Continue.
STUDENT A: In our case, the liquid flowing from one

vessel to the other does not perform any work on other bodies.
The liquid has no kinetic energy in the final state because
it is in a state of rest. Then, it remains to conclude that one
half of the potential energy has been converted into heat
evolved in friction. True, I don't have a very clear idea of
what kind of friction it is.

TEACHER: You reasoned correctly and came to the right
conclusion. I want to add a few words on the nature of fric­
tion. One can imagine that the liquid is dividetl into layers,
each characterizing a definite rate of flow. The closer the
layer to the walls of the tube, the lower its velocity. There
is an exchange of molecules between the layers, as a result of
which molecules with a higher velocity of ordered motion find
themselves among molecules with a lower velocity of ordered
motion, and vice versa. As a result, the "faster" layer has an
accelerating effect on the "slower" layer and, conversely, the
"slower" layer has a decelerating effect on the "faster" layer.
This picture allows us to speak of the existence of a peculiar
internal friction between the layers. Its effect is stronger with
a greater difference in the velocities of the layers in the mid­
dle part of the tube and near the walls. Note that the velocity
of the layers near the walls is influenced by the kind of inter­
action between the molecules of the liquid and those of the
walls. If the liquid wets the tube then the layer directly ad­
jacent to the wall is actually stationary.

STUDENT A: Does this mean that in the final state the tem­
perature of the liquid should be somewhat higher than in
the initial state?

TEACHER: Yes, exactly so. Now we shall change the con­
ditions of the problem to someextent. Assume that there is no
interaction between the liquid and the tube walls. Hence,
all the layers will flow at the same velocity and there will be
no internal friction. How then will the liquid flow from one
vessel to the other?

STUDENT A: Here the potential energy will be reduced
owing to the kinetic energy acquired by the liquid. In other
words, the state illustrated in Fig. 43b is not one of rest.
The liquid will continue to flow from the left vessel to the
right one until it reaches the state shown in Fig. 43c. In
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this state the potential energy is again the same as in the
initial state (Fig. 43a).

TEACHER: What will happen to the liquid after this?
STUDENT A: The liquid will begin to flow back in the

reverse direction, from the right vessel to the left one. As
a result, the levels of the liquid will fluctuate in the commu­
nicating vessels.

TEACHER: Such fluctuations can be observed, for instance,
in communicating glass vessels containing mercury. We know
that mercury does not wet glass. Of course these fluctuations

will be damped in the course of time,
since it is impossible to completely
exclude the interaction between the
molecules of the liquid and those of
the tube walls.

STUDENT A: I see that the law of
conservation of energy can be applied
quite actively.

TEACHER: Here is another prob­
lem for you. A bullet of mass m,
travellinghorizontally with a velocity
v 0, hits a wooden block of mass M,

suspended on a string, and sticks in the block. To what height
H will the block rise, after the bullet hits it, due to devia­
tion of the string from the equilibrium position (Fig. 44)?

STUDENT A: We shall denote by Vt the velocity of the block
with the bullet immediately after the bullet hits the block.
To find this velocity we make use of the law of conservation
of energy. Thus

from which

2 2

m;o = (m + M) ~1 (50)

VI = Vo y- m~M (51)

This velocity being known, we find the sought-for height H
by again resorting te the law of conservation of energy

2

(m+ M) gH = (m + M) ~1 (52)

Equations (50) and (52) can be combined

mv2

(m+M)gH=T
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from which
2

H=.!!!!..._rn_ (53)
2g m+M

TEACHER (to Student B): What do you think of this solu­
tion?

STUDENT B: I don't agree with it. We were told previously
that in such cases the law of conservation of momentum is to
be used. Therefore, instead of equation (50) I would have used
a different relationshi p

mo; = (m + M) VI (54)

(the momentum of the bullet before it hits the block is equal
to the momentum of the bullet and block afterward). From
this it follows that

(55)

If we now use the law of conservation of energy (52) and
'substitute the result of equation (55) into (52) we obtain

v~ m2

H = -2g -(m-+-M-)"""--2 (56)

TEACHER: We have two different opinions and two results.
The point is that in one case the law of conservation of ki­
netic energy is applied when the bullet strikes the block, and
in the other case, the law ofconservation of momentum. Which
is correct? (to Student A): What can you say to justify your
position?

STUDENT A: It didn't occur to me to use the law of conser­
'vation of momentum.

TEACHER (to Student B): And what do you say?
STUDENT B: I don't know how to substantiate my position.

I remember that in dealing with collisions, the law of conser­
vation of momentum is always valid, while the law of conser­
vation of energy does not always hold good. Since in the given
case these laws lead to different'results, my solution is evident­
ly correct.

TEACHER: As a matter of fact, it is indeed quite correct.
It is, however, necessary to get a better insight into the
matter. A collision after which the colliding bodies travel
stuck together (or one inside the other) is said to be a "comp­
letely inelastic collision". Typical of such impacts is the pre-
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sence of permanent set in the colliding bodies, as a result of
which a certain amount of heat is evolved. Therefore, equation
(50), referring only to the kinetic energy of bodies, is inap­
plicable. In our case, it is necessary to employ the law of
conservation of momentum (54) to find the velocity of the
box with the bullet after the impact.

STUDENT A: Do you mean to say that the law of conserva­
tion of energy is not valid for a completely inelastic collision?
But this law is universal.

TEACHER: There is no question but that the lawofconser­
vation of energy is valid for a completely inelastic collision
as well. The kinetic energy is not conserved after such a col­
lision. I specifically mean the kinetic energy and not the
whole energy. Denoting the heat evolved in collision by Q, we
can write the following system of laws of conservation refer­
ring to the completely inelastic collision discussed above

mo, = (m +M) v1 }

mv~_(m+M)vi+Q (57)
2 - 2

Here the first equation is the law of conservation of momentum,
and the second is the law of conservation of energy (including
not only mechanical energy, but heat as well).

The system of equations (57) contains two unknowns: VI

and Q. After determining V1 from the first equation, we can
use the second equation to find the evolved heat Q

Q = mv~ _ (m+M) m2v~ = mv~ (1 m_") (58)
2 2(m+M)2 2 m+M

It is evident from this equation that the larger the mass M,
the more energy is converted into heat. In the limit, for
an infinitely large mass. M, we obtain Q=mv5/2, i.e, all the
kinetic energy is converted into heat. This is quite natural:
assume that the bullet sticks in a wall.

STUDENT A: Can there be an impact in which no heat is
evolved?

TEACHER: Yes, such collisions are possible. They are said
to be "perfectly elastic". For instance, the impact of t\VO

steel balls can be regarded as perfectly elastic with a fair
degree of approximation. Purely elastic deformation of the
balls occurs and no heat is evolved. After the collision, the
balls return to their original shape.
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(59)

STUDENT A: You mean that in a perfectly elastic collision,
the law of conservation of energy becomes the law of conser­
vation of kinetic energy?

TEACHER: Yes, of course.
STUDENT A: But in this case I cannot understand how you

can reconcile the laws of conservation of momentum and of
energy. We obtain two entirely different equations for the
velocity after impact. Or, maybe, the law of conservation of
momentum is not valid for a perfectly elastic collision.

TEACHER: Both conservation laws are valid for a perfectly
elastic impact: for momentum and for kinetic energy. You have
no reason to worry about the reconciliation of these laws
because .alter a perfectly elastic impact, the bodies fly apart
at different velocities. Whereas after a completely inelastic
impact the colliding bodies travel at the same velocity (since
they stick together), after an elastic impact each body tra­
vels at its own definite velocity. Two unknowns require two
equations. Let us consider an example. Assume that a body
of mass m travelling at a velocity Vo elastically collides with
a body of mass M at rest. Further assume that as a result
of the impact the incident body bounces back. We shall de­
note the velocity of body m after the collision by v 1 and that
of body M by v 2 • Then the laws of conservation of momentum
and energy can be written in the form

mu;= Mv2-mv1 }
2 M 2 2

mvo =~+ mV1
2 2 2

Note the minus sign in the first equation. It is due to our
assumption that the incident body bounces back.

STUDENT B: But you cannot always know beforehand in
which direction a body will. travel after the impact. Is it im­
possible for the body m to continue travelling in the same di­
rection but at a lower velocity after the collision?

TEACHER: That is quite possible. In such a case, we shall
obtain a negative velocity VI when solving the system of equa­
tions (59).

STUDENT B: I think that the direction of travel of body m
after the collision is determined by the ratio of the masses m
and M.

TEACHER: Exactly. If m<M, body m will bounce back;
at m=M, it will be at rest after the collision; and at m>M,
it will continue its travel in the same direction but at a low-
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er velocity. In the general case, however, you need not wor­
ry about the direction of travel. It will be sufficient to assume
some direction and begin the calculations. The sign of the an­
swer will indicate your mistake, if any.

STUDENT B: W~ know that upon collision the balls may fly
apart at an angle to each other. We assumed that motion takes
place along a single straight line. Evidently, this must have
been a special case.

TEACHER: You' are right. We considered what is called a
central collision in which the balls travel before and after
the impact along a line passing through their centres. The
more general case of the off-centre collision will be dealt with
later. For the time being, I'd like to know if everything is
quite clear.

STUDENT A: I think I understand now. As I see it, in any
collision (elastic or inelastic), two laws of conservation are
applicable: of momentum and of energy. Simply the different
nature of the impacts leads to different equations for describ­
ing the conservation laws. In dealing with inelastic collisions,
it is necessary to take into account the heat evolved on im­
pact.

TEACHER: Your remarks are true and to the point.
STUDENT B: SO far as I understand it, completely elastic

and perfectly inelastic collisions are the two extreme cases.
Are they always suitable for describing real cases?

TEACHER: You are right in bringing up this matter. The
cases of collision we have considered are extreme ones. In real
collisions some amount of heat is always generated (no ideally
elastic deformation exists) and the colliding bodies may fly
apart with different velocities. In many cases, however, real
collisions are described quite well by means of simplified
models: completely elastic and perfectly inelastic colli­
sions.

Now let us consider an example of an off-centre elastic
collision. A body in the form of an inclined plane with a 45:>
angle of inclination lies on a horizontal plane. A ball of mass
m, {lying horizontally with a velocity vo, collides with the body
(inclined plane), which has a mass of M. As a result of the
impact, the ball bounces vertically upward and the body M be­
gins to slide without friction along the horizontal plane. Find
the velocity with which the ball begins its vertical travel after
the collision (Fig. 45). Which of you wishes to try your hand
at this problem?
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(60)

Fig. 45

~q
m

STUDENT B: Allow me to. Let us denote the sought-for ve·
locity of the ball by VI and that of body M by V2' Since the
collision is elastic, I have the right to assume that the kinetic
energy is conserved. Thus

22M 2
mvo = mVl +~
222

I need one more equation, for which I should evidently use the
law of conservation of momentum. I shall write it in the form

mvO=Mv2+mvt (61)

True, I'm not so sure about this last equation because velocity
VI is at right angles to velocity V2' •

TEACHER: Equation (60) is correct. Equation (61) is in­
correct, just as you thought. You should remember that the

law of conservation of momentum is a
111 vector equation, since the momentum

is a vector quantity having the 'same
direction as the velocity. True enough,
when all the velocities are directed
along a single straight line, the vector

","77fi77h'?77J.'777;"7j'J;i"];1 equation can be replaced by a scalar
one. That is precisely what happened
when we discussed central collisions.
In the general case, however, it is

necessary to resolve all velocities in mutually perpendicular
directions and to write the law of conservation of momentum
for each of these directions separately (if the problem is
considered in a plane, the vector equation can be replaced
by two scalar equations for the projections of the momen­
tum in the two mutually perpendicular directions).

For the given problem we can choose the horizontal and
vertical directions. For the horizontal direction, the law of
conservation of momentum is of the form

(62)mvo= MV2

From equations (60) and (62) we find the velocity

v1 = VO V MM m

STUDENT B: What do we do about the vertical direction?
TEACHER: At first sight, it would seem that the law of

conservation of momentum is not valid for the vertical dire-
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ction. Actually it is. Before the impact there were no verti­
cal velocities; after the impact, there is a momentum mo,
directed vertically upwards. We can readily see that still an­
other body participates in the problem: the earth. If it was
not for the earth, body M would not travel horizontally
after the collision. Let us denote the mass of the earth by Me
and the velocity it acquires as a result of the impact by Vee

The absence of friction enables us to treat the interaction
between the body M and the earth as taking place only in
the vertical direction. In other words, the velocity Ve of the
earth is directed vertically downwards. Thus, the participa­
tion of the earth in our problem doesn't change the form of
equation (62), but leads to an equation which describes the
law of conservation of momentum for the vertical direction

(63)

STUDENT B: Since the earth also participates in this problem
it will evidently be necessary to correct the energy relation
(60).

TEACHER: Just what do you propose to do to equation (60)?
STUDENT B: I wish to add a term concerning the motion of

the earth after the impact

22M 2 M 2mo; mVI + V2 + eVe-2- = -2- --2- --2- (64)

TEACHER: Your intention is quite logical. There is, however,
no need to change equation (60). As a matter of fact, it fol­
lows from equation (63) that the velocity of the earth is

v - mVI
e r: Me

Since the mass Me is practically infinitely large, the velo­
city V e of the earth after the impact is practically equal to
zero. Now, let us rewrite the term Mev~/2 in equation (64)
to obtain the form (Meve)ve/2. The quantity Meve in this
product has, according to equation (63), a finite value. If
this value is multiplied by zero (in the given case by vel the
product is also zero. From this we can conclude that the earth
participates very peculiarly in this problem. It acquires a
certain momentum, but at the same time, receives practically
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no energy. In other words, it participates in the law of con­
servation of momentum, but does not participate in the law
of conservation of energy. Th is circumstance is especially
striking evidence of the fact that the laws of conservation
of energy and of momentum are essentially different, mutual­
ly independent laws.

PROBLEMS

22. A body with a mass of 3 kg falls from a certain height with an ini­
tial velocity of 2 m per sec, directed vertically downward. Find the work
done to overcome the forces of resistance during 10 sec if it is known th at
the body acquired a velocity of 50 m per sec at the end of the IO-sec inter­
val. Assume that the force of resistance is constant. •

23. A body slides first down an inclined plane at an angle of 30° and
then along a horizontal surface. Determine the coefficient of friction if it
is known that the body slides along the horizontal surface the same dis-:
tance as along the inclined" plane.

24. Calculate the efficiency of an inclined plane for the case when a
body slides off it at uniform velocity.

25. A ball of mass m and volume V drops into water from a height
H, plunges to a depth h and then jumps out of the water (the density of the
ball is less than that of water). Find the resistance of the water (assuming
it to be constant) and the height hI to which the ball ascends after jumping
out of the water. Neglect air resistance. The density of water is denoted
by P'W.

26. A railway car with a mass of 50 tons, travelling with a velocity
of 12 km per hr, runs into a flatcar with a mass of 30·tons standing on the
same track. Find the velocity of joint travel of the railway car and flatcar

_--om directly after the automatic coupling device
I " operates. Calculate the distance travelled by the
: two cars after being coupled if the force of resis-
I tance is 5 per cent of the weight.
I 27. A cannon of mass M, located at the base
, of an inclined plane, shoots a shell of mass m in

tl: : a horizontal direction with an initial velocity Vo•
I To what height does the cannon ascend the incli-
: ned plane as a result of recoil if the angle of
I inclination of the plane is a and the coefficient of
I friction between the cannon and the plane is k?

.L----+-r-'7"""I"t~ 28. Two balls of masses M and 2M are hang-
. ing on threads of length 1 fixed at the same

FIg. 46 point. The ball of mass M is pulled to one side
through an angle of ex. and is released after

imparting to it a tangential velocity of vQ in the direction of the equilib­
rium position. To what height will the balls rise after collision if: (1) the
impact is perfectly elastic, and (2) if it is completely inelastic (the balls
stick together as a result of the impact)? .

29. A ball of mass M hangs on a string of length 1. A'bullet of mass m,
flying horizontally, hits the ball and sticks in it. At what minimum velo­
city must the bullet travel so that the ball will make one complete revolu­
tion in a vertical plane?
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30. Two wedges with angles of inclination equal to 45° and each of
mass M lie on a horizontal plane (Fig. 46). A ball of mass m (m~M)

dropsfreely from the height H. It first strikes one wedge arid then the other
and bounces vertically upward. Find the height to which the ball bounces.
Assume that both impacts are elastic and that there is no friction between
the wedges and the plane.

31. A wedge with an angle of 30° and a mass M lies on a horizontal
plane. A ball of mass m drops freely from the height H, strikes the wedge
elastically and bounces away at an angle of 30° to the horizontal. To
what height does the ball ascend? Neglect friction between the wedge
and the horizontal plane.



The world about us is full of vibrations and waves. Remember
this when you study the branch of physical science devoted
to these phenomena.
Let us discuss harmonic vibrations and, as a special case, the
vibrations of a mathematical pendulum. We shall analyse
the behaviour of the pendulum in noninertial frames of re­
ference,



Fig. 47

§ II.

CAN YOU DEAL

WITH HARMONIC

VIBRATIONS?

TEACHER: Some examinees do
not have a sufficiently clear
understanding of harmonic vib­
rations. First let us discuss their
definition.

STUDENT A: Vibrations are
said to be harmonic if they obey
the sine law: the deviation x
of a body from its equilibrium
position varies with time as
follows

x=A'sin(rot+a) (65)

where A is the amplitude of vib­
ration (maximum deviation of
the body from the position of
equilibrium), ro is the circular

.frequency (ro=2njT, where T is the period of vibration),
and a is the initial phase (it indicates the deviation of the
body from the position of equilibrium at the instant of
time t=O). The idea of harmonic vibrations is conveyed 'by

the motion of the projection of a
point which rotates at uniform angu­
lar velocity ro in a circle of radius A
(Fig. 47).

STUDENT B: I prefer another defini­
tion of harmonic vibrations. As is
known, vibrations occur due to action
of the restoring force, i.e, a' force
directed toward the position of equi­
librium and increasing as the body
recedes from the equilibrium position.
Harmonic vibrations are those in

which the restoring force F is proportional to the devia­
tion x of the body from the equilibrium position. Thus

F=kx \ (66)

Such a force is said to be "elastic".
TEACHER: I am fully satisfied with both proposed defini­

tions. In the first case, harmonic vibrations are defined on
the basis of how they occur; in the second case, on the basis
of their cause. In other words, the first definition uses the
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space-time (kinematic) description of the vibrations, and the
second, the causal (dynamic) description.

STUDENT B: But which of the two definitions is preferable?
Or, maybe, they are equivalent?

TEACHER: No, they are not equivalent, and the first (ki­
nematic) is preferable. It is more complete.

STUDENT B: But whatever the nature of the restoring force,
it will evidently determine the nature of the vibrations.
I don't understand, then, why 'my definition is less com­
plete.

TEACHER: This is not quite so. The nature of the restoring
force does not fully determine the nature of the vibrations.

STUDENT A; Apparently, now is the time to.recall that the
nature of the motion of a body at a given instant is determined
not only by the forces acting on the body at the given in­
stant, but by the initial conditions as well, i.e, the position
and velocity of the body at the initial instant. We discussed
this in § 4.

TEACHER: Absolutely correct. With ,reference to the case
being considered this statement means that the nature of the
vibrations is determined not only by the restoring force, but
by the conditions under which these vibrations started. It is
evident that vibrations can be effected in various ways. For
example, a body can be deflected a certain distance from its
equilibrium position and then smoothly released. It will begin
to vibrate. If the beginning of vibration is taken as the zero
instant, then from equation (65), we obtain a=:rt/2, and
the distance the body is deflected is the amplitude of vibra­
tion. The body can be deflected different distances from the
equilibrium position, thereby setting different amplitudes of
vibration.

Another method of starting vibrations is toImpart a cer­
tain initial velocity (by pushing) to a body in a state of
equilibrium. The body will begin to vibrate. Taking the begin­
ning of vibration as the zero point, we obtain from equation
(65) that a=O. The amplitude of these vibrations depends
upon the initial velocity imparted -to the body. It is evident­
ly possible to propose innumerable other, intermediate meth­
ods of exciting vibrations. For instance, a body is deflected
from its position of equilibrium and, at the same time, is
pushed or plucked, etc. Each of these methods will set de­
finite values of the amplitude A and the initial phase a of
the vibration.
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STUDENT B: Do you mean that the quantities A and a do
not depend upon the nature of the restoring force?

TEACHER: Exactly. You manipulate these two quantities
at your own discretion when you excite vibrations by one or
another method. The restoring force, i. e. coefficient k in
equation (66), determines only the circular frequency <U or,
in other words, the period of vibration of the body. It can be
said that the period of vibration is an intrinsic characteris­
tic of the vibrating body, while the amplitude A and the
initial phase a depend upon the external conditions that
excite the given vibration.

Returning to the definitions of harmonic vibrations, we
see that the dynamic definition contains no information on
either the amplitude or initial phase. The kinematic defini­
tion, on the contrary , contains information on these quanti-
ties. ..

STUDENT B: aut if we have such a free hand in dealing with
the amplitude, maybe it is not so important a characteristic
of a vibrating body?

TEACHER: You are mistaken. The amplitude is a very im­
portant characteristic of a vibrating body. To prove this, let
us consider an example. A ball of mass m is attached to two

o

Fig. 48 Fig. 49

elastic springs and accomplishes harmonic vibrations of ampli­
tude A in the horizontal direction (Fig. 48). The restoring
force is determined by the coefficient of elasticity k which
characterizes the elastic properties of the springs. Find the
energy of the vibrating ball.

STUDENT A: To find the energy of the ball, we can consider
its position of extreme deflection (x=A). In this position,
the velocity' of the ball equals zero and therefore its total
energy is its potential energy. The latter can be determined as
the work done against the restoring force F in displacing the
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ball the distance A from its equilibrium position. Thus
W= FA (67)

Next, taking into account that F=kA, according to equation
(66), we obtain

W=kA2

TEACHER: You reasoned along the proper lines, but commit­
ted an error. Equation (67) is applicable only on condition that
the force is constant. In the given case, force F varies with
the distance, as shown in Fig. 49. The work done by this force
over the distance x=A is equal to the hatched area under the
force curve. This is the area of a triangle and is equal to
kA 2/2. Thus •

kA2
W=­2 (68)

Note that the total energy of a vibrating body is proporti­
onal to the square of the amplitude of vibration. This demon­
strates what an important characteristic of a vibrating body
the amplitude is.

If O<x<A, then the total energy W is the sum of two
components-the kinetic and potential energies

kA2 mv2 . kx2

W=-2-=-2-+-2- (69)

Equation (69) enables the velocity v of the vibrating ball
to be found at any distance x from the equilibruim position.
My next question is: what is the period of vibration of the
ball shown in Fig. 48?

STUDENT B: To establish the formula for the period of
vibration it will be necessary to employ differential calculus.

TEACHER: Strictly speaking, you are right. However, if we
simultaneously use the kinematic and dynamic definitions of
harmonic vibrations we can manage without differential cal­
culus. As a matter of fact, we can' conclude from Fig. 47,
which is a graphical expression of the kinematic definition,
that the velocity of the body at the instant it passes the equi­
librium position is

2nA
v1 = roA =r- (70)

Using the result of equation (68), following from the dynamic
definit ion, we can conclude that velocity v 1 can be found

96



from the energy relation
mv~ kA2
-2-=-2- (71)

(at the instant the ball passes the equilibrium position the
entire energy of the ball is kinetic energy). Combining equa­
tions (70) and (71), we obtain 4n 2A 2m/T2=kA 2, from which

T=2n {~ (72)

As mentioned previously, the period of vibration is determined
fully by the properties of the vibrating system itself, and is

independent of the way the vib­
rations are set up.

STUDENT A: When speaking of
vibrations we usually deal, not
with a ball attached to springs,
but with a pendulum. Can the
obtained results be generalized to
include the pendulum?

TEACHER: For such generali-
c zation we must first find out

I
,\ what, in the case of the pendu-

\ lurn, plays the role of the coef-
\ ficient of elasticity k. It is evident

I
, \ that a pendulum vibrates not due

\ to an elastic force, but to the force
,,- mi'costr of gravity. Let us consider a ball

m~ (called a bob in a pendulum)
Fig. 50 suspended on a string of length 1.

We pull the bob to one side of
the equilibrium position so that the string makes an angle (1,

(Fig. 50) with the vertical. Two forces act on the bob: the
force of gravity mg and the tension T of the string. Their
resultant is the restoring force. As is evident from the figu­
re, it equals mg sin (1,.

STUDENT A: Which of the lengths, AB or AC, should be
considered the deflection of the pendulum from the equilib­
rium position (see Fig. 50)? .

TEACHER: We are analysing the harmonic vibrations of a
pendulum. For this it is necessary that the angle of maximum
deviation of the string from the equilibrium position be very
small ex~ 1 (73)
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(note that here angle a is expressed in radians; in degrees,
angle a should, in any case, be less than 10°). If condition
(73) is complied with, the difference between the lengths AB
and AC can be neglected

AB = 1sin a ~ AC= 1tan a

Thus your question becomes insignificant. For definiteness,
we can assume that x=AB=l sin a. Then equation (66) will
take the following form for a pendulum

mg sin a = kl sin a (66a)
from which

k= ~g (74)

Substituting this equation into equation (72), we obtain the
formula for the period of harmonic vibrations of a pendulum

T=2n V~ (75)

We shall also take up the question of the energy of the
pendulum. Its total energy is evidently equal to mgh, where h
is the height to which the bob ascends at the extreme position
(see Fig. 50). Thus

W = mgh= mgl (1- cos IX) = 2mgl sins ~ (76)

Relationship (76) is evidently suitable for all values of
angle a. To convert this result to relationship (68), it is ne­
cessary to satisfy the condition of harmonicity of the pendu­
lum's vibrations, i. e. inequality (73). Then, sin a can be ap­
proximated by the angle a expressed in radians, and equation
(76) will change to

I ex )2 ex2
W '" 2mgl (2 = mgl2"

Taking equation (74) into consideration, we finally obtain

W = k (1~)2 ~ k '(A:)2

which is, in essence, the same as equation (68).
STUDENT B: If I remember correctly, in previously studying

the vibrations of a pendulum, there was generally no require­
ment about the smallness of the angle of deviation.
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TEACHER: This requirement is unnecessary if we only deal
with the energy of the bob or the tension of the string. In
the given case we are actually considering, not a pendulum,
but the motion of a ball in a circle in a vertical plane. How­
ever, if the problem involves formula (75) for the period
of vibrations, then the vibration of the pendulum must neces­
sarily be harmonic and, consequently, the angle of deviation
must be small. For instance, in problem No. 33, the condition
of the smallness of the angle of deviation of the pendulum
is immaterial, while in problem No. 34 it is of vital import­
ance.

PROBLEMS

32. A ball accomplishes harmonic vibrations as shown in Fig. 48.
Find the ratio of the velocities of the ball at points whose distances from
the equilibrium position equal one half and one third of the amplitude.

33. A bob suspended on a string is deflected from the equilibrium po­
sition by an angle of 60° and is then released. Find the ratio of the tensions
of the string for the equilibrium position and for the maximum deviation
of the bob.

34. A pendulum in the form of a ball (bob) on a thin string is deflected
through an angle of 5°. Find the velocity of the bob at the instant it passes
the equilibrium position if the circular "frequency of vibration of the
pendulum equals 2 sec-I.



(77)

§ 12.

WHAT HAPPENS TO

A PENDULUM IN

A STATE

OF WEIGHTLESSNESS?

TEACHER: Suppose we drive a
nail in the wall of a lift and
suspend a bob on a string of length
I tied to the .nail, Then we set
the bob into motion so that it
accomplishes harmonic vibrations.
Assume that the lift ascends
with an acceleration of a. What
is the period of vibration of the
pendulum?

STUDENT A: When we go up in
a lift travelling with acceleration,
we feel a certain increasein weight.
Evidently, the pendulum should
"feel" the same increase. I think
that its period of vibration can
be found by the formula

T= 2:n .. /" 1
V g+a

I cannot, however, substantiate this formula rigorously enough.
TEACHER: Your formula is correct. But to substantiate it

we will have to adopt a point of view that is new to us. So far
we have dealt with bodies located in inertial frames of refer­
ence only, avoiding noninertial frames. Moreover, I even
warned you- against employing noninertial frames of reference
(see § 4). Be that as it may, in the present section it is more
convenient to use just this frame of reference which, in the
given case, is attached to the accelerating lift. Recall that
in considering the motion of a body of mass m in a noninertial
frame of reference having an acceleration a, we must, on purely
formal grounds, apply an additional force to the body. This is
called the force of inertia, equal to rna and acting in the
direction opposite to the acceleration. After the force of
inertia is applied to the body we can forget that the frame of
reference is travelling with acceleration, and treat the motion
as if it were in an inertial frame. In the case of the lift, we
must apply an additional force rna to the bob. This force is
constant in magnitude and its direction does not change and
coincides with that of the force of gravity mg. Thus it follows
that in equation (75) the acceleration g should be rep Iaced by
the arithmetical sum of the accelerations (g+a). As a result,
we obtain the formula (77) proposed by you.
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STUDENT A: Consequently, if the lift descends with a down­
ward acceleration a, the period of vibration will be determi­
ned by the difference in the accelerations (g-a) , since here
the force of inertia rna is opposite to the gravitational force.
Is that correct? ,

TEACHER: Of course. In this case, the period of vibration
of the pendulum is

T = 2n .. / I (78)J! g-a

This formula makes sense on condition that a<g. The closer
the value of the acceleration a is to g, the greater the period
of vibration of the pendulum. At a=g, the state of weight­
lessness sets in. What will happen to the pendulum in this
case?

STUDENT A: According to formula (78), the period becomes
infinitely large. This must mean that the pendulum is sta­
tionary.

TEACHER: Let us clear up some details of your answer. We
started out with the pendulum vibrating in the lift. All of a
sudden, the lift breaks loose and begins falling freely down­
ward (we neglect air resistance). What happens tothe pendu­
lum?

STUDENT A: As I said before, the pendulum stops.
TEACHER: Your answer is not quite correct. The pendulum

will indeed be stationary (with respect to the lift, of course)
if at the instant the lift broke loose the bob happened to be in
one of its extreme positions. If at that instant the bob was
not at an extreme position it will continue to rotate at the
end of the string in a vertical plane at a uniform velocity
equal to its velocity at the instant the accident happened.

STUDENT A: I understand now.
TEACHER: Then make a drawing illustrating the behaviour

of a pendulum (a bob attached to a string) inside a spaceship
which is in a state of weightlessness.

STUDENT A: In the spaceship, the bob at the end of the
string will either be at rest (with respect to the spaceship),
or will rotate in a circle whose radius is determined by the
length of the string (if, of course, the walls or ceiling of the
spaceship do not interfere).

TEACHER: Your picture is not quite complete. Assume that
we are inside a spaceship in a state of weightlessness. We
take the bob and string and attach the free end of the string
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Fig. 52Fig. 51

so that neither walls nor ceiling interfere with the motion of
the bob. After this we carefully release the bob. The ball
remains stationary. Here we distinguish two cases: (I) the
string is loose, and (2) the string is taut. Consider the first
case (position 1 in Fig. 5Ia) ..We impart a certain velocity
Vo to the bob. As a result, the bob will travel in a straight
line at uniform velocity until the string becomes taut (posi­
tion 2, Fig. 5Ia). At this instant, the reaction of the string
will act on the bob in the same
manner as the reaction of a wall ta)

acts on a ball bouncing off it. As
a result, the direction of travel of
the bob will change abruptly and

it will then again travel at uniform velocity in a straight line
(position 3, Fig. 5Ia). In this peculiar form of "reflection" the
rule of the equality of the angles of incidence and reflection
should be valid. Nowconsider the secondcase:wefirst stretch the
string taut and then carefully release the bob. As in the first
case, the bob will remain stationary in the position it was re­
leased(position 1, Fig. 5Ib). Then weimpart a certain velocity V o
to the bob in a direction perpendicular to the string. As a
result the bob begins to rotate in a circle at uniform velocity.
The plane of rotation is determined by the string and the ve-
ctor of the velocity imparted to the bob. .

Let us consider the following problem. A string of length
1with a bob at one end is attached to a truck which slides with-
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(80)

out [riction down an inclined plane having an angle of incli­
nation a (Fig. 52a). We are to find the period of vibration of
this pendulum located in a frame of reference which travels
with a certain acceleration. However, in contrast to the pre­
ceding problems with the lift, the acceleration of the system is
at a certain angle to the acceleration of the earth's gravity.
This poses an additional question: what is the equilibrium di­
rection of the pendulum string?

STUDENT A: I once tried to analyse such a problem but
became confused and couldn't solve it.

TEACHER: The period of vibration of a pendulum in this
case is found by formula (75) except that g is to be replaced
by a certain effective acceleration as in the case of the lift.
This acceleration (we shall denote it by geff) is' equal to the
vector sum of the acceleration of gravity and that of the given
system. Another matter to be taken into acount is tha t in the
above-mentioned sum, the acceleration vector of the truck
should appear with the reversed sign, since the force of iner­
tia is in the direction opposite to the acceleration of the system.
The acceleration vectors are shown in Fig. 52b, the accelera­
tion of the truck being equal to g sin a. Next we find ge.fJ

gell = Vg;ff x + g:ff y = V(g sin a cosa)2+ (g-g sin- a)2 =
= g cosa (79)

from which

V IT=2n g cos a,

STUDENT A: How can we determine the equilibrium direc­
tion of the string?

TEACHER: It is the direction of the acceleration getf.
On the basis of equation (79) it is easy to see that this di­
rection makes an angle ct with the vertical. In other words,
in the equilibrium position, the string of a pendulum on a
truck sliding down an inclined plane will be perpendicular
to the plane.

STUDENT B: Isn't it possible to obtain this last result in
some other way?

TEACHER: We can reach the same conclusion directly by
considering the equilibrium of the bob with respect to the
truck. The forces applied to the bob are: its weight mg, the
tension T of the string and the force of inertia rna (Fig. 53).
We denote the angle the string makes with the vertical by ~.
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Fig. 53

Next we resolve all these forces in the vertical and horizon­
tal directions and then write the conditions of equilibrium
for the force components in each of these directions. Thus

Tcos~+masinex=mg} (81)
T sin ~= macos ex

Taking into consideration that a=g sin ex, we rewrite the sys-
tem of equations (81) in the form .

Tcos~=mg(1-sin2ex) }
T sin ~ = mg sin ex cos ex

After dividing one equation by the other we obtain
cot ~ = cot ex

Thus, angles p and ex turn out to be equal. Consequently,
the equilibrium direction of the pendulum string is perpendi­
cular to the inclined plane.

STUDENT B: I have followed your explanations very closely
and come to the conclusion that I was not so wrong after all

when, in answer to your question
about the forces applied to a satel­
lite, I indicated the force of gravity
and the centrifugal force (see § 8).
Simply, my answer should be refer­
red to the frame of reference atta­
ched to the satellite, and the cent­
rifugal force is to be understood as
being the forceof inertia. In a noni-
nertial frame of reference attached
to the satellite, we have a problem,
not in dynamics, but in statics. It
is a problem of the equilibrium of
forces of which one is the centrifugal
force of inertia.

TEACHER: Such an approach to the satellite problem is
permissible. However, in referring to the centrifugal force in
§ 8, you did not consider it to be a force of inertia. You were
simply trying to think up something to keep the satellite from
falling to the earth. Moreover, in the case you mention, there
was no necessity for passing over to a frame of reference at­
tached to the satellite: the physical essence of the problem was
more clearly demonstrated without introducing a centrifugal
force of inertia. My previous advice is still valid: if there is
no special need, do not employ a noninertial frame of reference.
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The laws of statics are laws of equilibrium. Study these laws
carefully. Do not forget that they are of immense practical
importance. A builder without some knowledge of the basic
laws of statics is inconceivable. We shall consider examples
illustrating the rules for the resolution of forces. The subse­
quent discussion concerns the conditions of equilibrium of
bodies, which are used, in particular, for locating the centre
of gravity.



§ 13.

CAN YOU USE

THE FORCE RESOLUTION

METHOD EFFICIENTLY?

TEACHER: In solving mecha­
nical problems it is frequently
necessary to resolve forces. The­
refore, I think it would be useful
to discuss this question in so­
mewhat more detail. First let
us recall the main rule: to resolve
a force into any two directions it
is necessary to pass two straight
lines through the head and two
more through the tail of the force
vector, each pair of lines being
parallel to the respective directions
of resolution. As a result we .ob­
tain a parallelogram whose sides
are the components of the given
force. This rule is illustrated in

Fig. 54 in which .force F is resolved in two directions: AA 1

and BB r- Let us consider several problems in which force re­
solution is the common approach. The first problem is illust­
rated in Fig. 55: we have two identical loads P suspended each

X
B 'A,

A B1

F

Fig. 54

p

Fig. 55

from the middle of a string. The strings sag due to the loads and
make angles of a 1 and CX 2 with the horizontal. Which of the
strings is subject to greater tension?

STUDENT A: I can resolve the weight of each load on the
same drawing in directions parallel to the branches of the
strings. From this resolution it follows that the tension in
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the string is T=P / (2 sin a). Thus, the string which sags less
is subject to greater tension.

TEACHER: Quite correct. Tell me, can we draw up the string
so tightly that it doesn't sag at all when the load is applied?

STUDENT A: And why not?
TEACHER: Don't hurry to answer". Make use of the result

you just obtained.
STUDENT A: Oh yes, I see. The string cannot be made so

taut that there is no sag. The tension in the string increases
with a decrease in angle a. However strong the string, it will
be broken by the tension when angle a becomes sufficiently
small.

TEACHER: Note that the sagging of a string due to the action
of a suspended load results from the elastic properties of
the string causing its elongation. If the string could not
deform (elongate) no load could be hung from it. This shows
that in construction engineering, the strength analysis of
various structures is closely associated with their capability
to undergo elastic deformations (designers are wont to say
that the structure must "breathe"). Exceedingly rigid struc­
tures are unsuitable since the stresses developed in them at
small deformations may prove to be excessively large and lead
to failure. Such structures may even fail under their own
weight.

-If we neglect the weight of the string in the preceding
problem, we can readily find the relationship between the
angle a of sag of the string and the weight P of the load.
To do this we make use of Hooke's law for elastic stretching
of a string or wire (see problem No. 35).

Consider another example. There' is a Russian proverb, "a
wedge is driven out by a wedge" (the English equivalent being
"like cures like"). This can be demonstrated by applying the
method of force resolution (Fig. 56a). Wedge 1 is driven out
of a slot by driving wedge 2 into the same slot, applying the
force F. Angles a and ~ are given. Find the force that acts
on wedge 1 and enables it to be driven out of the slot.

STUDENT A: I find it difficult to solve this problem.
TEACHER: Let us begin by resolving force F- into components

in the horizontal direction and in a direction perpendicular to
side AB of wedge 2. The components obtained are denoted by
F 1 and F 2 (Fig. 56b). Component F 2 is counterbalanced by the
reaction of the left wall of the slot; component F b equal to
F /tan (x, will act on wedge 1. Next we resolve this force into
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components in the vertical direction and in a direction per­
pendicular to the side CD of wedge 1. The respective compo­
nents are F8 and F4. (Fig. 56c). ComponentF. is counterbalanced
by the reaction of the right wall of the slot, while compo­
nent F3 enables wedge 1 to be driven out of the slot. This is
the force we are seeking. It can readily be seen that it equals

A tan ~F1 tan p= F-­tan ex.

Let us now consider a third example, illustrated in Fig. 57a.
Two weights, PI and P 2, are suspended from a string so that
the portion of the string between them is horizontal. Find
(Q) angle P (angle a,. being known)

and the tension in each portion
of the string (TAB, T BC and
Tc D) . This example resembles
the preceding one with the
wedges.
fa)

(~ ~

~/
F

(C) ~

icD ~

Fig. 56 Fig. 57

STUDENT A: First I shall resolve the weight PI into force
components in the directions AB and Be (Fig. 57b). From this
resolution we find that TAB=P 1/sin a and T BC=P 1/tan a,
Thus we have already found the tension in two portions of
the string. Next.I shall resolve the weight P 2 into components
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in the directions BC and CD (Fig. 57c). From this resolution
wecan write the equations: TBC=P2/tan ~ and Tcn=P 2/sin p.
Equating the values for the tension in portion BC of the
string obtained in the two force resolutions, we can write
p Iltan a=P 2/tan ~, from which

A P2 tan a
t' = arctan PI

Substituting this value into the equation for TeD we can find
the tension in portion CD of the string.

TEACHER: -Is it really so difficult to complete the problem,
i. e. to find the force TeD?

STUDENT A: The answer will contain the sine of the
arctan ~, i.e.

T - P2

CD - • ( P tan a )SIn arctan 2 PI

TEACHER: Your answer is correct but it can be written in a
simpler form if sin ~ is expressed in terms of tan ~. As a mat­
ter of fact

• R tan ~SIn t' = -:-;.::::;:==::::;::;;:::-. y 1-t-tan2 ~

Since tan ~=tan a(P2/Pl), we obtain

T CD = t~\x V1+( ~:rtan- ex

STUDENT B: I see that beforetaking an examination in phy­
sics, you must review your mathematics very thoroughly.

TEACHER: Your remark is quite true.

PROBLEMS

\I'
1\. \

~-f-_1
Fig. 58

A

35. An elastic string, stretched from wall to wall in a lift, sags due to
the action of a weight suspended from its middle point as shown in Fig. 55.
The angle of sag a equals 30° when the lift is at rest and 450 when the.lift

travels with acceleration. Find the magnitude
and direction of acceleration of the lift. The
weight of the string is to be neglected.

36. A bob of mass m= 100 g is suspended
from a string of length 1= 1 m tied to a bracket
as shown in Fig. 58 (a=300). A horizontal velo­
city of 2 m per sec is imparted to the bob and it
begins to vibrate as a pendulum. Find the forces
acting in members AB and Be when the bob is at
the points of maximum deviation from the equi­
librium position.



§ 14.

WHAT DO YOU KNOW

ABOUT

THE EQUILIBRIUM

OF BODIES?

(Q) (6)

TEACHER: Two positions of
equilibrium of a brick are shown
in Fig. 59. Both equilibrium po­
sitions are stable, but their deg­
ree of stability differs. Which of
the two positions is the more
stable?

STUDENT A: Evidently, the
position of the brick in Fig. 59a.

TEACHER: Why?
STUDENT A: Here the centre

of gravity of the brick is nearer
to the earth's surface,

TEACHER: This isn't all.
STUDENT B: The area of the

bearing surface is greater than
in the position shown in Fig. 59b.

TEACHER: And this isn't all either. To clear it up, let us
consider the equilibrium of two bodies: a rectangular paral­
lelepiped with a square base (a)

and a right circular cylinder
(Fig. 60a). Assume that the
parallelepiped and cylinder
are of the same height H
and have bases of the same
area S. In this case, the cen­
tres of gravity of the bodies
are at the same height and,
in addition, they have bea­
ring surfaces of the same
area. Their degrees of stabi- (0) r-----,.----r----r---_

lity, however, are different.

Fig. 59 Fig. 60

The measure of the stability of a specific state ofequilibrium
is the energy that must be expended to permanently disturb
the given state of the body.
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STUDENT B: What do you mean by the word "permanently"?
TEACHER: It means that if the body is subsequently left to

itself, it cannot return to the initial state again. This amount
of energy is equal to the product of the weight of the body by
the height to which the centre of gravity must be raised so
that the body cannot return to its initial position. In the
example with the parallelepiped and cylinder, the radius of
the cylinder is R=VS/n and the side of the parallelepiped's
base is a=VS. To disturb the equilibrium of the cylinder, its
centre of gravity must be raised through the height (Fig. 60b)

'~(H 2 H
h1 = 1/ 2) +R2_2"

To disturb the equilibrium of the parallelepiped, its centre
of gravity must be raised (Fig. 60b)

h2 = 1f(~r+(;r-~
Since (a/2)/R=VnS/2VS=Vn/2<1 it follows that h2<h i •

Thus, of the two bodies considered, the cylinder is the more
stable.

Now I propose that we return to the example with the two
positions of the brick.

STUDENT A: If we turn over the brick it will pass consecu­
tively from one equilibrium position to another. The dashed

line in Fig. 61 shows the trajectory
described by its centre of gravity in
this process. To change the position
of a lying brick its centre of gravity
should be raised through the height
hh expending an energy equal to

~'77777'1777J.'7777J7t7';~7177i77/ mgh h and to change its upright
Fig. 61 position, the centre of gravity sho-

uld be raised through h 2 , the energy
expended being mgh2• The greater degree of stability of the
lying brick is due to the fact that

mgh; > mgb, (82)

TEACHER: At last you've succeeded in substantiating the
greater stability of the lying position of a body.

STUDENT B: But it is evident that the heights hI and h 2

depend upon the height of the centre of gravity above floor
level and on the area of the base. Doesn't that mean that in
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discussing the degree of stability of bodies it is correct to com­
pare the heights of the centres of gravity and the areas of the
bases?

TEACHER: Why yes, it is, but only to the extent that these
quantities influence the difference between the heights hi
and h 2• Thus, in the example with the parallelepiped and
cylinder, the comparison of the heights of the centres of gra­
vity and the areas of the bases is insufficient evidence for
deciding which of the bodies is the more stable. Besides, I
wish to draw your attention to the following. Up till now we
have tacitly assumed that the bodies were made of the same
material. In this case, the inequality (82) could be satisfied
by observing the geometric condition h l>h 2. tln the general
case, however, bodies may be madeof different materials, and
the inequality (82) may be met even when h 1<h 2 owing to
the different densities of the bodies. For example, a cork brick
will be less stable in the lying position than a lead brick in
the upright position. Let us now see what conditions for the
equilibrium of bodies you know.

STUDENT A: The sum of all the forces applied to a body
should equal zero. In addition, the weight vector of the body
should fall within the limits of its base.

TEACHER: Good. It is better, however, to specify the con­
ditions of equilibrium in a different form, more general and
more convenient for practical application. Distinction should
be made between two conditions of equilibrium.

First condition: The projections of all forces applied to the
body onto any direction, should mutually compensate one
another. In other words, the algebraic sum of the projections
of all the forces onto any direction should equal zero. This
condition enables as many equations to be written as there
are independent directions in the problem: one equation for a
one-dimensional problem, two for a two-dimensional problem
and three for the general case (mutually perpendicular dire­
ctions are chosen).

Second condition (moment condition): The algebraic sum of
the moments of the forces about any point should equal zero.
Here, all the force moments tending to turn the body about the

.chosen point in one direction (say, clockwise) are taken with
a plus sign and all those tending to turn the body in the op­
posite direction (counterclockwise) are taken with a minus
sign. To specify the moment condition, do the following: (a)
establish all forces applied to the body; (b) choose a point
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(85)

(84)

(83)

equation
NB+Nc=Pl+P2

TEACHER: I have no objection to this equation as such.
However, in our problem it is simpler to use the second
-condition of equilibrium (the moment condition), employing
it first with respect to point B and then to point C.

STUDENT A: All right, I'll do just that. As a result I can
write the equations

with respect to point B }
aPl-2aNc+3aP2= 0

with respect to point C
2aNB-aPl+aP~=O •

TEACHER: Now you see: each of your equations contains
only one of the unknowns. It can readily be found.

STUDENT A: From equations (83) we find

N - PI-P2
B- 2

N - Pl+3P2
c- 2

TEACHER: Equation (85) always has a positive result. This
.means that reaction Nc is always directed upward (as we as­
sumed). Equation (84) gives a positive result when P l>P 2,

negative when P 1<P 2 and becomes zero when P 1=P 2 • This
means that when P l>P 2, reaction N B is in the direction
we assumed, i. e. upward (see Fig. 62b); that when P l<P 2,

reaction N B is downward (see Fig. 62c); and at PI==P 2

there is no reaction N ts-



Fig.Fig. 63

§ 15.
,

HOW DO YOU LOCATE

THE CENTRE

OF GRAVITY?

TEACHER: In many cases, exa­
minees find it difficult to locate
the centre of gravity of a body or
system of bodies. Is everything
quite clear to you on this matter?

STUDENT A: No, I can't say
it is. I don't quite understand
how you find the centre of gra­
vity in the two cases shown in
Figs. 63a and 64a.

TEACHER: All right.· In the
first case it is convenient to di­
vide the plate into two rectangles
as shown by the dashed line in
Fig. 63b. The centre of gravity
of rectangle 1 is at point A; the
weight of this rectangle is pro-

portional to its area and is equal, as is evident from the figure,
to 6 units (here the weight is conditionally measured in square
centimetres). The centre of gravity of rectangle 2 is at point B;

( Q)

the weight of this rectangle is equal to 10 units. Next we
project the points A and B on the coordinate axes Ox and Oy;
these projections are denoted by A 1 and B 1 on the x-axis and
by A 2 and B 2 on the y-axis. Then we consider the "bars" A 181
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and A 2B 2, assuming that the masses are concentrated at the
ends of the "bars", the massof each end being equal to that of
the corresponding rectangle (see Fig. 63b). As a result, the
problem of locating the centre of gravity of our plate is re­
duced to finding the centres of gravity of "bars" A I B 1 and
A 2B 2' The positions of these centres of gravity will be the
coordinates of the centre of gravity of the plate.

But let us complete the problem. First we determine the
location of the centre of gravity of "bar" A 181 using the
well-known rule of force moments (see Fig. 63b): 6x= 10(2­
-x). Then x=5/4 em. Thus, the X-coordinate of the centre of
gravity of the plate in the chosen system of coordinates is
X= (1 +x) cm=9/4 em. In a similar way we find the centre
of gravity of "bar" A 2B 2 : 6y=10(I-y) from which it follows
that y=5/8 em. Thus the V-coordinate of the centre of gravity
of the plate is Y= (1.5+y) cm= 17/8 em.

STUDENT A: Now I understand. That is precisely how I
would go about finding coordinate X of the centre of gravity
of the plate. I was not sure that coordinate Y could be found
in the same way.

TEACHER: Let us consider the secondcase,shown in Fig.64a.
Two approaches are available. For instance, instead of the
given circle with one circular hole, we can deal with.a system of
two bodies: a circle.with two symmetrical circular holes and
a circle inserted into one of the holes (Fig. 64b). The centres
of gravity of these bodies are located at their geometric cent­
res. Knowing that the weight of the circle with two holes is
proportional to its area, i. e. (rtR2_2rtR2/4)=rtR2/2, and
that of the small circle is proportional to its area rtR 2/4,
we reduce the problem to finding the point of application
of the resultant of the two parallel forces shown below in
Fig. 64b. We denote by x the distance from the sought-for
centre of gravity to the geometric centre of the large circle.
Then, according to Fig. 64b, we can write (rtR2/4) (R/2-x) =
=(rtR 2/2)x, from which x=R/6.

There is another possible approach. The given circle with
the hole can be replaced by a solid circle (with no hole) plus
a circle located at the same place where the hole was and
having a negative weight (i. e. one acting upward) (Fig. 64c)
which will compensate for the positive weight of the corres­
ponding portion of the solid circle. As a whole, this arrange­
ment corresponds to the initial circle with the circular hole.
In this case, the problem is again reduced to finding the point
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Fig. 65

(11)

of application of the resultant of the two forces shown at the
bottom of Fig. 64c. According to the diagram we can write:
nR2x:r=(nR2/4) (R/2+x), from which, as in the preceding
case, x=R/6.

STUDENT A: I like the first approach better because it does
not require the introduction of a negative weight.

TEACHER: In addition, I want to propose a problem invol­
ving locating the centre of gravity of the system of loads shown
t a) a in Fig. 65a. We are given six

loads of different weights (P h

P 2, ... , p6)' arranged along a bar
at equal distances a from one

P6 another. The weight of the bar is
neglected. How would you go
about solving this problem?

STUDENT A: First I would con­
sider two loads, for instance, PI
and P 2, and find the point of
application of their resultant.

c Then I would indicate this resul-
AI':'\--o..(;')---G)--!:-<i>--"(.v--~ tant (equal to the sum PI+P 2)

on the drawing and would cross
PG out forces P 1 and P 2, from fur­

ther consideration. Now, instead
of the six forces, only five would
remain. Next, I· would find the
point of application of the resul-

tant of another pair of forces, etc. Thus, by consecutive ope­
rations I would ultimately find the required resultant whose
point of application is the centre of gravity of the whole
system.

TEACHER: Though your method of solution is absolutely
correct, it is by far too cumbersome. I can show you a much
more elegant solution. We begin by assuming that we are sup­
porting the system at its centre of gravity (at point B in
Fig. 65b).

STUDENT B (interrupting): But you don't yet know the loca­
tion of the centre of gravity. How do you know that it is
between the points of application of forces P3 and P4 ?

TEACHER: It makes no difference to me where exactly the
centre of gravity is. I shall not take advantage of the fact
that in Fig. 65b the centre of gravity turned out to be bet­
ween the points of application of forces Pa and P4. So we
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assume we are supporting the system at its centre of gravity.
As a result, the bar is in a state of equilibrium. In addition
to the six forces, one more force-the bearing reaction N­
will act on the bar. Since the bar is in a state of equilibrium,
we can apply the conditions of equilibrium (see § 14). We
begin with the first condition of equilibrium for the projection
of all the forces in the vertical direction

N=Pl+P2+P3+P4+P5+P6 (86)

Then we apply the second condition (moment condition),
considering the force moments with respect to point A in
Fig. 65b (i. e. the left end of the bar). Here, all the forces
tend to turn the bar clockwise, and the bearing reaction tends
to turn it counterclockwise. We can write

N (AB) = aP2 + 2aP3 + 3aP4+ 4aPo+5aP6 (87)

Combining conditions (86) and (87), wecan find the length AR,
i. e. the required position of the centre of gravity measured
from the left end of the bar

STUDENT A: Yes, I must admit that your method is much
simpler.

TEACHER: Also note that your method of solving the prob­
lem is very sensitive to the number of loads on the bar (the
addition of each load makes the solution more and more
tedious). My solution, on the contrary, does not become more
complicated when loads are added. With each new load, only
one term is added to the numerator and one to the denomina­
tor in equation (88).

STUDENT B: Can we find the location of the centre of gra­
vity of the bar if only the moment condition is used?

TEACHER: Yes, we can. This is done by writing the condi­
tion of the equilibrium of force moments with respect to two
different points. Let us do precisely that. We will consider
the condition for the force moments with respect to points A
and C (see Fig. 65b). For point A the moment condition is
expressed by equation (87); for point C, the equation will be

N (5a-AB) = aPs+ 2aP4 + 3aPa+ 4aP2 +5aP} (89)
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Dividing equation (87) by (89) we obtain

AB _ aP 2+2aP3+3aP4 +4aPs+5aP6

5a- AB aPs+2aP4+3aP3+4aP2+5aP!

From which

AB (aPft + 2aP4 +3aPa+4aP2+ 5aPl +aP2+ 2aPa+
+3aP 4 +4aP s +5aP6 = 5a (aP2+2aPJ +3aP4 +4aPs +5aP6)

PROBLEM

37. Locate the centre of gravity of a
circular disk having two circular holes as
shown in Fig. 66. The radii of the holes are
equal to one half and. one fourth of the
radius of the disk.Fig. 66

or

AB x5a (Pt +P2+P3 + P4 +Ps +P6)= 5a(aP2 +2aP3 +
+3aP4 + 4aP5 + 5aP6)

Thus we obtain the same result as
in equation (88).



Archimedes' principle does not usually draw special atten­
tion. This is a common mistake of students preparing for
physics exams. Highly interesting questions and problems
can be devised on the basis of this principle.
We shall discuss the problem of the applicability of Archirne­
des' principle to bodies in a state of weightlessness.



§ 16.

DO YOU KNOW

ARCHIMEDES'

PRINCIPLE?

TEACHER: Do you know Archi­
medes' principle?

STUDENT A: Yes, of course. The
buoyant force exerted by a li­
quid on-a body immersed in it is
exactly equal to the weight of
the liquid displaced by the body.

TEACHER: Correct. Only it
should be. extended to include
gases: a buoyant force is also
exerted by a gas on a body "im­
mersed" in it. And now can you
'give a theoretical proof of your
statement?

STUDENT A: A proof of Archi­
_________ . medes' principle?

TEACHER: Yes.
STUDENT A: But Archimedes' principle was discovered di­

rectly as the result of experiment.
TEACHER: Quite true. It can, however, be derived from

simple energy considerations. Imagine that you raise a body
of volume V and density p to a height H, first in a vacuum
and then in a liquid with a density Po. The energy required
in the first case equals pgVH. The energy required in the
second case is less because the raising of a body of volume V
by a height H is accompanied by the lowering of a volume V of

p the liquid by the same height H. There-i_l_l_tDtr fore, the energy expended in the
-- second case equals (pgVH-PogVH).
--rrT 11'1 Regarding the subtrahend polJVH as

p rrh the work done by a certain force, we
+.Po5 , can conclude that, compared with a

Fig. 67 vacuum, in a liquid an additional
force F=PogV acts on the body making

it easier to raise. This force is called the buoyant force.
Quite obviously, it is exactly equal to the weight of the
liquid in the volume V of the body immersed in the liquid.
(Note that we neglect the energy losses associated with
friction upon real displacements of the body in the liquid.)

Archimedes' principle can be deduced in a somewhat diffe­
rent way, Assume that the body immersed in the liquid has
the form of a cylinder of height h and that the area of its base
is S (Fig. 67). Assume that the pressure on the upper base is p.
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Then the pressure on the lower base will equal p+rogh. Thus,
the difference in pressure on the upper and lower bases equals
Pogh. If we multiply this difference by the area S of the base,
we obtain the force F=PoghS which tends to push the body
upward. Since hS=V, the volume of the cylinder, it can
readily be seen that this is the buoyant force which appears
in Archimedes' principle.

STUDENT A: Yes, now I see that Archimedes' principle can
be arrived at by purely logical reasoning.

TEACHER: Before proceeding any further, let us recall the
condition for the floating of a body.

STUDENT A: I remember that condition. The weight of the
body should be counterbalanced by the buoyant force acting
on the body in accordance with Archimedes' principle.

TEACHER: Quite correct. Here is an example for you.
A piece of ice floats in a vessel with water. Will the water le­
vel change when the ice melts?

STUDENT A: The level will remain unchanged because the
weight of the ice is counterbalanced by the buoyant force and
is therefore equal to the weight of the water displaced .by
the ice. When the ice melts it converts into water whose
volume is equal to that of the water that was displaced pre­
viously.

TEACHER: Exactly. And now let us assume that there is,
for instance, a piece of lead inside the ice. What will happen to
the water level after the ice melts in this case?

STUD·ENT A: I'm not quite sure, but I think the water level
should reduce slightly. I cannot, however, prove this.

TEACHER: Let us denote the volume of the piece of ice
together with the lead by V, the volume of the piece of lead
by v, the volume of the water displaced by the submerged part
of the ice by V 17 the density of the water by Po, the density
of the ice by PI and the density of the lead by P2' The piece
of ice together with the lead has a weight equal to

PIg (V- v)+P2gv

This weight is counterbalanced by the buoyant force PogVt •

Thus
PIg (V-v) + P2gv = PogVt (90)

After melting, the ice turns into water whose volume V 2 is
found from the equation

PIg (V -v) == PogV2
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Substituting this equation into (90) we obtain

PogV2 + p~v = PogV1

From which we find that the volume of water obtained as a
result of the melting of the ice is

V = V -vli. (91)
2 1 Po

Thus, before the ice melted, the volume of water displaced
was V I' Then the lead and the water from the melted icebegan
to occupy the volume (V2+V). To answer the question concern­
ing the water level in the vessel, these volumes should be
compared. From equation (91) we get

V
2
+ v= V1-v P2-PO (92)

Po

Since p 2>P 0 (lead is heavier than water), it can be seen
from equation (92) that (V2+V)<V r- Consequently, the
water level will reduce as a result of the melting of the ice.
Dividing the difference in the volumes V1- (V2+V) by the
cross-sectional area S of the vessel (assuming, for the sake
of simplicity, that it is of cylindrical shape) we can find
the h~ight h by which the level drops after the ice melts. Thus

h= v P2-PO (93)
Pos

Do you understand the solution of this problem?
STUDENT A: Ves, I'm quite sure I do.
TEACHER: Then, instead of the piece of lead, let us put a

piece of cork of volume v and density P3 inside the ice. What
will happen to the water level when the ice melts?

STUDENT A: I think it will rise slightly.
TEACHER: Why?
STUDENT A: In the example with lead the level fell. Lead is

heavier than water, and cork is lighter than water. Conse­
quently, in the case of cork we should expect the opposite
effect: the water level should rise.

TEACHER: You are mistaken. Your answer would be correct
if the cork remained submerged after the ice melted. Since the
cork is lighter than water it will surely rise to the surface
and float. Therefore, the example with cork (or any other body
lighter than water) requires special consideration. Using the
result of equation (91), we can find the difference between
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the volume of the water displaced by the piece of ice together
with the cork, and that of the water obtained by the melting
of the ice. Thus

VI-Vs)=V~ (94)
Po

Next we apply the condition for the floating of the piece of
cork:

Psv = POVI (95)

where VI is the volume of the part of the cork submerged in
water. Substituting this equation into (94), we obtain

VI = V2 +V1

Thus the volume of water displaced by the piece of ice is
exactly equal to the sum of the volume of water obtained from
the melted ice. and the volume displaced by the submerged
portion of the floating piece of cork. So in this case the water
level remains unchanged.

STUDENT A: And if the piece of ice contained simply a bub-
ble of air instead of the piece of cork? .,

TEACHER: After the ice melts, this bubble will be released.
It can readily be seen that the water level in the' vessel wi11
be exactly the same as it was before the ice melted. In short,
the example with the bubble of air in the ice is similar to
that with the piece of cork.

STUDENT A: I see that quite interesting questions and prob­
lems can be devised on the basis of Archimedes' principle.

TEACHER: Unfortunately, someexaminees don't give enough
attention to this principle when preparing for their physics
examinations.

Let us consider the following example. One pan of a balance
carries a vessel with water and the other, a stand with a weight
suspended from it. The pans are balanced (Fig. 68a). Then
the stand is turned so that the suspended weight is completely
submerged in the water. Obviously, the state of equilibrium
is disturbed since the pan with the stand becomes lighter
(Fig. 68b). What additional weight must be put on the pan
with the stand to restore equilibrium?

STUDENT A: The submerged weight is subject to a buoyant
force equal to the weight of the water of the volume displaced
by the submerged weight (wedenote this weight of water by P).
Consequently, to restore equilibrium, a weight P should be
placed on the pan with the stand.
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Fig. 68

8, f\~~

(0)

TEACHER: You are mistaken. You would do well to recall
Newton's third law of motion. According to this law, the force
with which the water in the vessel acts on the submerged we­
ight is exactly equal to the force with which the submerged
weight acts on the water in the opposite direction. Consequent­
ly, as the weight of the pan with the stand reduces, the weight
of the pap with the vessel increases. Therefore, to restore equilib­

rium, a weight equal to 2P
should be added to the pan
with the stand.

STUDENT A: I can't quite
understand your reasoning.
After all, the interaction of
the submerged weight and
the water in no way resem­
bles the interaction of two
bodies in mechanics.

TEACHER: The field of
application of Newton's
third law is not limited to
mechanics. The expression
"to every action there is an
equal and opposite reaction"
refers to a great many kinds

of interaction. We can, however, apply a different line of
reasoning in our case, one to which you will surely have no
objections. Let us deal with the stand with the weight and the
vessel with the water as part of a single system whose total
weight is obviously the sum of the weight of the left pan and
that of the right pan. The total weight of the system should
not change due to interaction of its parts with one another.
Hence, if as the result of interaction the weight of the right
pan is decreased by P, the weight of the left pan must be
increased by the same amount (P). Therefore, after the weight
is submerged in the vessel with water, the difference between
the weights of the left and right pans should be 2P.

PROBLEM
38. A vessel of cylindrical shape with a cross-sectional area S is filled

with water in which a piece of ice, containing a lead ball, floats. The vo­
lume of the ice together with the lead ball is V and 1/20 of this volume is
above the water level. To what mark will the water level in the vessel
reduce a Her the ice melts? The densities of water, ice and lead are assu­
med to be known.



§ 17.

[S ARCHIMEDES'

PRINCIPLE VALID

IN A SPACESHIP?

TEACHER: Is Archimedes' prin­
ciple valid in a spaceship when
it is in a state of weightlessness?

STUDENT A: I think it is not.
The ess~nce of Archimedes' prin­
ciple is that due to the different
densities of. the body and the
liquid (of equal volumes, of
course), different amounts of work
are required to raise them to the
same height. In a state of weight­
lessness, there is no difference in
these amounts -of work since the
work required to lift a body and
that required to lift an equal
volume of the liquid is equal
to zero.

We can reach the same conclusion if we consider the pres­
sure of the liquid on a body submerged in it because the buo­
yant force is due to the difference in the pressures exerted
on the bottom and top bases on the body. In a state of weight­
lessness, this difference in pressure vanishes and, with it,
the buoyant force. I may add that in a state of weightlessness
there is no difference between "up" and "down" and so it is
impossible to indicate which base of the body is the upper
and which the lower one.

Thus,' in a state of weightlessness, no buoyant force acts
on a body submerged in a liquid. This means that Archimedes'
principle is not valid for such a state.

STUDENT B: I don't agree with the final conclusion of
Student A. I am sure that Archimedes' principle is valid for
a. state of weightlessness. Let us reason more carefully. We
she. 11 not pass over directly to a state of weightlessness,
but begin with a lift travelling with a certain acceleration
a which is in the same direction as the acceleration g of gra­
vity. Assume that a<g. It is easy to see that in the given
case a body submerged in a liquid will be subject to the buo­
yant force

F=po(g-a)V (96)

and the weight of the liquid of a volume displaced by the
body is also equal to Po(g-a)V. Thus, the buoyant force is
still equal to the weight of the liquid displaced by the body,
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i. e. Archimedes' principle is valid. Next we will gradually
increase the acceleration a, approaching the value of g. Ac­
cording to equation (96), the buoyant force will be gradually
reduced, but simultaneously and in exactly the same way, the
weight of a volume of liquid equal to the volume of the body
wi11 also be reduced. In other words, as acceleration a appro­
aches acceleration g, Archimedes' principle will continue
to be valid. In the limit a=g a state of weightlessness sets
in. At this the buoyant force becomes zero, but so does the
weight of the liquid displaced by the body. Consequently,
nothing prevents us from stating that Archimedes' principle
is valid for a state of weightlessness as well. I wish to illust­
rate my argument by the following example. Let us suppose
that a piece of cork floats in a vessel with water. According
to equation (95) the ratio of the volume of the piece of cork
submerged in the water to the total volume of the piece is
equal to the ratio of the density of cork to the density of wa­
ter. Thus

VI P3-=-
V Po

(97)

Next, we suppose that this vessel IS In a lift and the lift
begins to descend with a certain acceleration a. Since this
does not change the densities of cork and water, equation (97)
holds. In other words, in the motion of the lift with accelera­
tion, the position of the piece of cork with reference to the
water level remains the same as in the absence of acceleration.
Obviously, this condition will not change in the limiting case
when a=g and we reach a state of weightlessness. In this way,
the position of the piece of cork with respect to the water
level, determined by Archimedes' principle, turns out to be
independent of the acceleration of the lift. In this case no
distinction can be made between the presence and absence of
weightlessness.

TEACHER: I should say that both of your arguments are
well substantiated. However, I must agree with Student A:
Archimedes' principle is not valid for a state of weightlessness.

STUDENT B: But then you must refute my proofs.
TEACI-IER: That's just what I'll try to do. Your arguments

are based on two main points. The first is that at an accelera­
tion »<s a body is buoyed up in the liquid in a manner
fully complying with Archimedes' principle. The second is
that this statement must hold for the limiting case as well,
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when a=g, i. e. a state of weightlessness is reached. I have no
objection to the first point, but I don't agree with the second.

STUDENT B: But you can't deny that the piece of cork
remains in the same position in a state of weightlessness as
wellt And its position directly follows from Archimedes'
principle.

TEACHER: Yes, that's true. The piece of cork actually
does remain in the same position in a state of weightlessness
as well. However, in this state its position with respect to
the surface of the liquid is no longer a result of Archimedes'
principle. Push it deep into the water with your finger and
it will remain suspended at the depth you left it. On the
other hand, if there is even the smallest difference (g-a) ,
the piece of cork will come up to the surface and float in
the position determined by Archimedes' principle. Thus, there
is a basic difference between weightlessness and the presence
of even an insignificant weightness. In other words, in passing
over to a state of weightlessness, at the "very last instant"
there occurs an abrupt change, or jump, that alters the whole
situation qualitatively. .

STUDENT B: But what is this jump due to? Where did it
come from? In my reasoning, acceleration a smoothly ap­
proached acceleration g.

TEACHER: This jump is related to the fact that at a=g,
a certain symmetry appears: the difference between "up" and
"down" disappears, which, incidentally, was very aptly pointed
out by Student A. If the difference (g-a) is infinitely small,
but still not .equal to zero, the problem contains a physically
defined direction "upward". It is precisely in this direction
that the buoyant force acts. However, at a=g, this direction
disappears, and all directions become physically equivalent.
That's what I mean by a jump. The destruction or the appear­
ance of symmetry always occurs with ~ jump.



Basically, modern physics is molecular physics. Hence it is
especially important to obtain some knowledge of the fun­
damentals of the molecular-kinetic theory of matter, if only
by using the simplest example of the ideal gas. The question
of the peculiarity in the thermal expansion of water is dis­
cussed separately. The gas laws will be analysed in detail and
will be applied in the solution ofspecific engineering problems.



§ IS.

WHAT DO YOU KNOW

ABOUT THE

MOLECULAR-KINETIC

THEORY OF MATTER?

TEACHER: One of the common
examination questions is: what
are the basic principles of the
molecular-kinetic theory of mat­
ter? How would you answer this
question?

STUDENT A: I would mention
the two basic principles. The
first is that all bodies consist
of .molecules, and the second,
that the molecules are in a state
of chaotic thermal motion.

TEACHER: Your answer is very
typical: laconic and quite in­
complete. I have noticed that
students usually take a formal
attitude with respect to this

question. As a rule, they do not know what should be said
about the basic principles of the molecular-kinetic theory,
and explain it away with just a few general remarks. Irr this
connection, I feel that the molecular-kinetic theory of matter
should be discussed in more detail. I shall begin by mentio­
ning the principles of this theory that can be regarded as the
basic ones.

1. Matter has a "granular" structure: it consists of mole­
cules '(or atoms). One gram-molecule of a substance contains
NA = 6 X 1023 molecules regardless of the physical state of the
substance (the number NA is called Avogadro's number).

2. The molecules of a substance are in a state of incessant
thermal motion.

3. The nature of the thermal motion of the molecules de­
pends upon the nature of their interaction and changes when
the substance goes over from one physical state to another.

4. The intensity of the thermal motion of the molecules
depends upon the degree to which the body is heated, this
being characterized by the absolute temperature T. The theory
proves that the mean energy e of a separate molecule is pro­
portional to the temperature T. Thus, for instance, for monoa­
tomic (single-atom) molecules

e= ~ kT (98)

where k= 1.38 X 10- 1 6 erg/deg is a physical constant called
Boltzmann's constant.

130



5. From the standpoint of the molecular-kinetic theory,
the total energy E of a body is the sum of the following terms:

E = Ek + Ep + U \99)

where Ek is the kinetic energy of the body as a whole, Ep is
the potential energy of the body as a whole in a certain ex­
ternal field, and U is the energy associated with the thermal
motion of the molecules of the body. Energy U is called the
internal energy of the body. Inclusion of the internal energy
in dealing with various energy balances is a characteristic
feature of the molecular-kinetic theory.

STUDENT B: We are used to thinking that the gram-molecule
and Avogadro's number refer to chemistry.

TEACHER: Evidently, that is why students taking a physics
examination do not frequently know what a gram-molecule is,
and, as a rule, are always sure that Avogadro's number
refers only to gases. Remember: a gram-molecule is the number
of grams of a substance which is numerically equal to its
molecular weight (and by no means the weight of the molecule
expressed in grams, as some students say); the gram-atom is
the number of grams of a substance numerically equal to its
atomic weight; and Avogadro's number is the number of mole­
cules in a gram-molecule (or atoms in a gram-atom) of any
substance, regardless of its physical state.
. I want to point out that Avogadro's number is a kind of a
bridge between the macro- and microcharacteristlcs of a sub­
stance. Thus, for example, using Avogadro's number, you can
express such a microcharacteristic of a substance as the mean
distance between its molecules (or atoms) in terms of the
density and molecular (or atomic) weight. For instance, let us
consider solid iron. Its density is p=7.8 g/crn" and atomic
weight A =56. We are to find the mean distance between the
atoms in iron. We shall proceed as follows: in A g of iron
there are NA atoms, then in 1 g of iron there must be NAIA
atoms. It follows that in 1 ern" there are pNA/A atoms. Thus
each atom of iron is associated with a volume of AI (pNA) ern".
The required mean distance between the atoms is approxima­
tely equal to the cube root of this volume

V-A - V 56
x --- pN A = 7.8X6x 1023 em --- 2 X 10- 8 em

STUDENT B: Just before this you said that the nature of the
thermal motion of the molecules depends upon the intermolecu-
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Fig. 69

e,

lar interaction and is changed in passing over from one phy­
sical state to another. Explain this in more detail, please.

TEACHER: Qualitatively, the interaction of two molecules
can be described by means of the curve illustrated in Fig. 69.
This curve shows the dependence of the potential energy Ep of
interaction of the molecules on the distance r between their
centres. At a sufficiently large distance between the molecules
the curve Ep (r) asymptotically approaches zero, i. e. the
molecules practically cease to interact. As the molecules come
closer together, the curve Ep (r) turns downward. Then, when
they are sufficiently close to one another, the molecules be­
gin to repulse one another and curve Ep (r) turns upward and

E continues to rise (this repulsion
11 means that the molecules cannot

freely penetrate into each other). As
can be seen, the Ep (r) curve has a
characteristic minimum.

STUDENT B: What is negative
energy?

TEACHER: As we know,energycan
o~---~-~~r be measured from any value. For in-

stance, we can measure the potential
energy of a stone from ground level
of the given locality, or we can mea­

sure it from sea level, it makes no difference. In the given case,
the zero point corresponds to the energyof interaction between
molecules separated from each other at an infinitely large dis­
tance. Therefore, the negative energy of the molecule means
that it is in a bound state (bound with another molecule).
To "free" this molecule, it is necessary to add some energy to
it to increase the energy of the molecule to the zero level.
Assume that the moleculehas a negative energye i (see Fig. 69).
It is evident from the curve that in this case the molecule can­
not get farther away from its neighbour than point B or get
closer than point A. In other words, the molecule will vibrate
between points A and B in the field of the neighbouring mole­
cule (more precisely, there will be relative vibration of two
molecules forming a bound system).

In a gas molecules are at such great distances from one
another on an average that they can be regarded as practically
noninteracting. Each molecule travels freely, with relatively
rare collisions. Each molecule participates in three types of
motion: translatory, rotary (the molecule rotates about its
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own axis) and vibratory (the atoms in the molecule vibrate
with respect to one another). If a molecule is monoatomic
it will have only translatory motion. '

In a crystal the molecules are so close together that they
form a single bound system. In this case, each molecule vibra­
tes in some kind of general force field set up by the interac­
tion of the whole collective of molecules. Typical of a crystal
as a common bound system of molecules is the existence of an
ordered three-dimensional structure-the crystal lattice. The
lattice points are the equilibrium positions of the separate
molecules. The molecules accomplish their complex vibratory
motions about these positions. It should be noted that in some
cases when molecules form a crystal, they continue to retain
their individuality to some extent. In these cases, distinc­
tion is to be made between the vibration of the molecule in
the field of the crystal and the vibration of the atoms in the
separate molecules. This phenomenon occurs when the binding
energy of the atoms in the molecules is substantially higher
than the binding energy of the molecules themselves in the
crystal lattice. In most cases, however, 'the molecules do not
retain their individuality upon forming a crystal so that the
crystal turns out to be made up, not of separate molecules,
but of separate atoms. Here, evidently, there is no intramole­
cular vibration, but only the vibration of the atoms in the
field of the crystal. This, then, is the minimum amount of
information that examinees should possess about atomic and
molecular thermal motions in matter. Usually, when speaking
about the nature of thermal motions in matter, examineesget no
farther than saying it is a "chaotic motion", thus trying to cover
up the lack of more detailed knowledge of thermal motion.

STUDENT B: But you haven't said anything about the nature
of the thermal motions of molecules in a liquid.

TEACHER: Thermal motions in a liquid are more involved
than in other substances. A liquid occupying an intermediate
position between gases and crystals exhibits, along with
strong particle interaction, a considerable degree of disorder
in its structure. The difficulty of dealing with crystals, owing
to the strong interaction of the particles, is largely compen­
sated for by the existence of an ordered structure-the crystal
lattice. The difficulty of dealing with gases owing to the
disordered position of the separate particles is compensated
for by a practically complete absence of particle interac­
tion. In the case of liquids, however, there are both kinds of
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difficulties mentioned above with no corresponding compensa­
ting factors. It can be said that in a liquid the molecules, as
a rule, completely retain their individuality. A great diver­
sity of motions exists in liquids: displacement of the molecules,
their rotation, vibration of the atoms in the molecules and
vibration of the molecules in the fields of neighbouring mo­
lecules. The worst thing is that all of these types of motion
cannot, strictly speaking, be treated separately (or, as they
say, in the pure form) because there is a strong mutual influen­
ce of the motions.

STUDENT B: I can't understand how translational motion of
the molecule can be combined with its vibration in the fields
of neighbouring molecules. •

TEACHER: Various models have been devised in which at­
tempts were made to combine these motions. In one model,
for instance, it was assumed that the molecule behaves as fol­
lows: it vibrates for a certain length of time in the field set up
by its neighbours, then it takes a jump, passing over into new
surroundings, vibrates in these surroundings, takes another
jump, etc. Such a model is called the "jump-diffusion model".

STUDENT B: It seems that is precisely the way in which
atoms diffuse in crystals.

TEACHER: You are right. Only remember that in crystals
this process is slower: jumps into a new environment occur
considerably more rarely. There exists another model accor­
ding to which a molecule in a liquid behaves as follows: it
vibrates surrounded by its neighbours and the whole enviro­
nment smoothly travels ("floats") in space and is gradually
deformed. This is called the "continuous-diffusion model".

STUDENT B: You said that a liquid occupies an intermediate
position between crystals and gases. Which of them is it
closer to?

TEACHER: What do you think?
STUDENT B: It seemsto me that a liquid is closer to a gas.
TEACHER: In actuality, however, a liquid is most likely

closer to a crystal.· This is indicated by the similarity of
their densities, specifie heats and coefficients of volume ex­
pansion. It is also known that the heat of fusion is conside­
rably less than the heat of vaporization. All these facts
are evidence of the appreciable similarity between the forces
of interparticle bonding in crystals and in liquids. Another
consequence of this similarity is the existence of elements
of ordered arrangement in the atoms of a liquid. This phenome-
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Fig. 70

(a)

non, known as "short-range order", was established in X-ray
scattering experiments.

STUDENT B: What do you mean by short-range order?
TEACHER: Short-range order is the ordered arrangement of a

certain number of the nearest neighbours about any arbitra­
rily chosen atom (or molecule). In contrast to a crystal, this
ordered arrangement with respect to the chosen atom is dis­
turbed as we move away' from it, and does not lead to the
formation of a crystal lattice. At short distances, however,
it is quite similar to the arrangement of the atoms of the
given substance in the solid phase. Shown in Fig. 70a is the
long-range order for a chain of atoms. It can be compared

with the short-range order
shown in Fig. 70b.

@ E) sse E) E> S E> The similarity between liq-
uids and crystals has led to
the term "quasi-crystallinity"

(0) of liquids.
~ ~ (!) @ e @ Q Q 0 STUDENT B: But in such a

case, liquids can evidently be
dealt with by analogy with
crystals.

TEACHER: I should warn you against misuse of the concept
of quasi-crystallinity of liquids and attributing too much
importance to it. Firstly, you must keep in mind that the
liquid state corresponds to a wide range of temperatures,
and the structural-dynamic properties of liquids cannot be
expected to be the same (or even approximately the same)
throughout this range. Near the critical state, a liquid should
evidently lose all similarity to a solid and gradually trans­
form to the gaseous phase. Thus, the concept of quasi-crystal­
linity of liquids may only be justified somewhere near the mel­
ting point, if at all. Secondly, the nature of the intermolecu­
lar interaction differs from one liquid to another. Consequent­
ly, the concept of quasi-crystallinity is not equally applicable
to all liquids. For example, water is found to be a more quasi­
crystalline liquid than molten metals, and this explains many
of its special properties' (see § 19).

STUDENT B: I see now that there is no simple picture of
the thermal motions of molecules in a liquid.

TEACHER: You are absolutely right. Only the extreme cases
are comparatively simple. Intermediate cases are always
complex.
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STUDENT A: The physics entrance examination require­
ments include the question about the basis for the molecular­
kinetic theory of matter. Evidently, one should talk about
Brownian motion.

TEACHER: Yes, Brownian motion is striking experimental
evidence substantiating the basic principles of the molecular­
kinetic theory. But, do you know what Brownian motion
actually is?

STUDENT A: It is thermal motion of molecules.
TEACHER: You are mistaken; Brownian motion can be ob­

served with ordinary microscopes! It is motion of separate par­
ticles of matter bombarded by molecules of the medium in
their thermal motion. From the molecular point of view these
particles are macroscopic bodies. Nevertheless, by ordinary
standards they are extremely small. As a result of their ran­
dom uncompensated collisions with molecules, the Brownian
particles move continuously in a haphazard fashion and thus
moveabout in themedium, which is usually somekind of liquid.

STUDENT B: But why must the Brownian particles be so.
small? Why don't we observe Brownian motion with appre-
!I ciable particles of matter such as tea

leaves in a glass of tea?
TEACHER: There are two reasons for

this. In the first place, the number of
collisions of molecules with the surface
of a particle is proportional to the area
of the surface; the mass of the particle
is proportional to its volume. Thus,
with an increase in the size R of a
particle, the number of colIisions of

o R molecules with its surface increases
Fig. 71 proportionally to R2, while the mass of

the particle which is to be displaced by
the collision increases in proportion to R3. Therefore, as the
particles increase in size it becomes more and more difficult
for the molecules to push them about. To make this clear, I
plotted two curves in Fig. 71: y=R2 and y=R3. You can
readily see that the quadratic relationship predominates at
small values of R and the cubic. relationship at large values.
This means that surface effects predominate at small values
of R and volume effects at large values.

In the second place, the Brownian particle must be very
small since its collisions with rnolecules are uncompensated,
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i. e. the number of collisions from the left and from the right
in unit time should differ substantially. But the ratio of this
difference in the number of collisions to the whole number of
collisions will be the greater, the less the surfaceof the particle.

STUDENT A: What other facts substantiating the molecu­
lar-kinetic theory are we expected to know?

TEACHER: The very best substantiation of the molecular­
kinetic theory is its successful application in explaining
a great number of physical phenomena. For example, we can
give the explanation of the pressure of a gas on the walls of a
vessel containing it. The pressure p is the normal component
of the force F acting on unit area of the walls. Since

F=m~= ~(mv) (100)
~t ~t

to find the pressure we must determine the momentum trans­
mitted to a unit area of the wall surface per unit time due to
the blows with which the molecules of the gas strike the walls.

Assume that a moleculeof mass m is travelling perpendicular
to a wall with a velocity v. As a result of an elastic collision
with the wall, the molecule reverses its direction of travel
and flies away from the wall with a velocity of v. The change
in the momentum of the moleculeequals ~ (mv)=m~v=2mv.
This momentum is transmitted to the wall. For the sake of
simplicity we shall assume that all the molecules of the gas
have the same velocity v and six directions of motion in both
directions along three coordinate axes (assume that the wall
is perpendicular to one of these axes). Next, we shall take into
account that in unit time only those molecules will reach the
wall which are at a distance within v from it and whose velo­
city is directed toward the wall. Since a unit volume of the
gas contains NIV molecules. in unit time ~ (N IV)v molecules
strike a unit area of the wall surface. Sinceeach of these mole­
cules transmits a momentum of 2mv, as a result of these blows
a unit area of the wall surface receives a momentum equal
to 2mv~ (N /V)v. According to equation (100). this is the re­
quired pressure p. Thus

2 N mv2

p= 3V -·2- (101)

According to equation (98), we can replace the energy of
the molecule mv2/2 by the quantity ~ kT [in reference to the

137



translational motion of molecules, equation (98) is valid for
molecules with any number of atoms]. After this, equation
(101) can be rewritten as

pV=NkT (102)

Note that this result was obtained by appreciable simplifica­
tion of the problem (it was assumed, for instance, that the
molecules of the gas travel with the same velocity). However,
theory shows that this result completely coincides with that
obtained in a rigorous treatment.

Equation (102) is beautifully confirmed by direct measure­
ments. It is good proof of the correctness of the concepts of
the molecular-kinetic theory which were used for deriving
equation (102).

Now let us discuss the phenomena of the evaporation and
boiling of liquids on the basis of molecular-kinetic concep­
tions. How do you explain the phenomenon of evaporation?

STUDENT A: The fastest molecules of liquid overcome the
attraction of the other molecules and fly out of the liquid.

TEACHER: What will intensify evaporation?
STUDENT A: Firstly, an increase in the free surface of the

liquid, and secondly, heating of the liquid.
TEACHER: It should be remembered that evaporation is a

two-way process: while part of the molecules leave the liquid,
another part returns to it. Evaporation will be the more
effective the greater the ratio of the outgoing molecules to
the incoming ones. The heating of the liquid and an increase
of its free surface intensify the escape of molecules from the
liquid. At the same time, measures can be taken to reduce the
return of molecules to the Iiqurd. For example, if a wind blows
across the surface of the liquid, the newly escaped molecules
are carried away, thereby reducing the probability of their
return. That is why wet clothes dry more rapidly in the wind.

If the escape of molecules from a Ii quid and their return
compensate each other, a state of dynamic equilibrium sets in,
and the vapour above the liquid becomes saturated. In some
cases it is useful to retard the evaporation process. For ins­
tance, rapid evaporation of the moisture in bread is undesi­
rable. To prevent fast drying of bread it is kept in a closed
container (bread box, plastic bag). This impedes the escape
of the evaporated molecules, and a layer of saturated vapour
is formed above the surface of the bread, preventing further
evaporation of water from the bread.
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Now, please explain the boiling process.
STUDENT A: The boiling process is the same as evaporation,

but proceeds more intensively.
TEACHER: I don't like your definition of the boiling process

at all. I should mention that many examinees do not unders­
tand the essence of this process. When a liquid is heated, the
solubility of the gases it contains reduces. As a result, bubbles
of gas are formed in the liquid (on the bottom and walls of the
vessel). Evaporation occurs in these bubbles, they become filled
with saturated vapour, whose pressure increases with the tem­
perature of the liquid. At a certain temperature, the pressure
of the saturated vapour inside the bubbles becomesequal to the
pressure exerted on the bubbles from the outside (this pressure
is equal to the atmospheric pressure plus the pressure of the
layer of water above the bubble). Beginning with this instant,
the bubbles rise rapidly to the surface and the liquid boils.
As you can see, the boiling of a liquid differs essentially from
evaporation. Note that evaporation takes place at any tempe­
rature, while boiling occurs at a definite temperature called
the boiling point. Let me remind you that if the boiling pro­
cess has begun, the temperature of the liquid cannot be raised,
no matter how long we continue to heat it. The temperature
remains at the boiling point until all of the liquid has boiled
away.

It is evident from the above discussion that the boiling
point of a liquid is depressed when the outside pressure reduces.
In this. connection, let us consider the following problem.
A flask contains a small amount of water at room temperature.
We begin to pump out the air above the water from the flask
with a vacuum pump. What will happen to the uater?

STUDENT A: As the air is depleted, the pressure in the flask
will reduce and the boiling point will be depressed. When it
comes down to room temperature, the water will begin to boil.

TEACHER: Could the water freeze instead of boiling?
STUDENT A: I don't know. I think it couldn't.
TEACHER: It all depends upon the rate at which the air is

pumped out of the flask. If this process is sufficiently slow,
the water should begin to boil sooner or later. But if the air
is exhausted very rapidly, the water should, on the contrary,
freeze. As a result of the depletion of the air (and, with it,
of the water vapour), the evaporation process is' intensified.
Since in evaporation the molecules with the higher energies
escape from the water, the remaining water will be cooled. If
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the air is exhausted slowly, the cooling effect is compensated
for by the transfer of heat from the outside. As a result the
temperature of the water remains constant. If the air is
exhausted very rapidly, the cooling of the water cannot be
compensated by an influx of heat from the outside, and the
temperature of the water begins to drop. As soon as this hap­
pens, the possibility of boiling is also reduced. Continued
rapid exhaustion of the air from the flask will lower the tem­
perature of the water to the freezing point, and the unevapo­
rated remainder of the water will be transformed into ice.
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TEACHER: What are the pecu­
liarities of the thermal expansion
of water?

STUDENT A: When water is
heated from 0 to 4°C its density
increases. It begins to expand
only when its temperature is
raised above 4 °C.

TEACHER: How do you exp­
lain this?

STUDENT A: I don't know.
TEACHER: This distinctive fea­

ture of water is associated with
its atomic structure. Molecules
of water can interact only in one
way: each molecule of water can
add on only four neighbouring

molecules whose centres then form a tetrahedron (Fig. 72).
This results in a friable, lace-like structure indicative of
the quasi-crystallinity of water. Of course, we can speak of
the structure of water, as of any other liquid, only on a short­
~ange level (see § 18). With an increase in the distance from

a selected molecule this order will
undergo gradual distortion due to the
bending and rupture of intermolecular
bonds. As the temperature is raised,
the bonds between the molecules are
ruptured more frequently, there are
more and more molecules with unoc­
cupied bonds filling the vacancies of
the tetrahedral structure and, conse­
quently, the degree of quasi-crystalli­
nity is reduced. The above-mentioned
lace-like structure of water as a quasi-

'ystalline substance convincingly explains the anomaly of the
'rysical properties of water, in particular, the peculiarity of its
ierrnal expansion. On one hand, an increase in temperature
ads to an increase in the mean distances between the atoms
a molecule due to the intensi fication of intramolecular vib­

tions, i. e. the molecules seem to "swell" slightly. On the
her hand, an increase in temperature breaks up the lace­
<e structure of water which, naturally, leads to a more dense
"eking of the molecules themselves. The first (vibrational)

§ 19.

HOW DO YOU ACCOUNT

FOR THE PECULIARITY

IN THE THERMAL

EXPANSION OF WATER?
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effect should lead to a reduction in the density ofwater. This
is the common effect causing the thermal expansion of solids.
The second effect, that of structure breakup, should, on the
contrary, increase the density of water as it is heated. In hea­
ting water to 4°C, the structural effect predominates and
the density ef water consequently increases. Upon further
heating, the vibrational effect begins to predominate and
therefore the density of water is reduced.



§ 20.

HOW \VELL DO YOU

KNOW THE GAS LA\VS?

TEACHER: Please write the
equation for the combinedgas law.

STUDENT A: This equation is
of the form

pV Povor=---Y;- (103)

where p, V and T are the pressure,
volume and temperature of a
certain mass of gas in a certain
state, and po, Vo and To are
the same for the initial state. The
temperature is· expressed in the
absolute scale.

STUDENT B: I prefer to use an
equation of a different form

pV=!!!:-RT (104)
fA.

where m is the mass of the gas, J1 is the mass of one gram­
molecule and R is the universal gas constant.

TEACHER: Both versions of the combined gas law are cor­
rect. (To Student B) You have used the universal gas cons­
tant. Tell me, how would you compute its value? I don't
think one can memorize it.

STUDENT B: To compute R, I can use equation (103), in
which the parameters p.; Vo and To refer to a given mass of
gas but taken at standard conditions. This means that po=
=76 em Hg (em.of mercury column), T 0=273 "K and V0=

= (m/Jl) x 22.4 litres, since a gram-molecule of any gas at stan­
dard conditions occupies a definite volume equal to 22.4
litres. The ratio mIll is evidently the number of gram-molecu­
les contained in the given mass of the gas. Substituting these
values in equation (103) we obtain

V =.!!!:... T 76 em Hg~22.4 litres
P fA. 273 oK

Comparing this with expression (104) we find that R=6.2
(em Hg) litres/deg.

TEACHER: I purposely asked you to do these calculations in
order to demonstrate the equivalence of expressions (103) and
(104). Unfortunately, examinees usually know only equation
(103) and are unfamiliar with (104), which coincides with
equation (102) obtained previously on the basis of molecular-
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kinetic considerations. From a comparison of equations (102)
and (104) it follows that (m/~)R=Nk. Then

LV
R=mk=NAk (105)

J.!

Thus the universal gas constant turns out to be the product of
Avogadro's number by Boltzmann's constant.

Next, we shall see whether you can use the equation of
the combined gas law. Please draw a curve showing an isobaric
process, i. e. a process in which the gas pressure remains con­
stant, using coordinate axes V and T.

STUDENT A: I seem to recall that this process is described
by astraight linet

TEACHER: Why recall? Make use of equation (104). On its
basis, express the volume of the gas as a function of its tem­
perature.

STUDENT A: From equation (104) we get

V = !!!..!i T (106)
f.1 p

TEACHER: Does the pressure here depend upon the tempe­
rature?

STUDENT A: In the given case it doesn't 'because we are
dealing with an isobaric process. .

TEACHER: Good. Then the product (m/~) (RIp) in equation
(106) is a constant factor. We thus obtain a linear dependence
of the volume of the gas on its temperature. Examinees can
usually depict isobaric (p=const), isothermal (T=const) and
isochoric (V=const) processes in diagrams with coordinate
axes p and V. At the same time they usually find it difficult
to depict these processes with other sets of coordinate axes,
for instance V and T or T and p. These three processes are shown
in Fig. 73 in different sets of coordinate axes.

STUDENT B: I have a question concerning isobars in a diag­
ram with coordinate axes V and T. From equation (106) and
from the corresponding curve in Fig. 73 we see that as the tem­
perature approacheszero, the volume of the gas also approaches
zero. However, in no case can the volume of a gas become
less than the total volume of all its molecules. Where is the
error in my reasoning?

TEACHER: Equations (102), (103), (104) and (106) refer to
the so-called ideal gas. The ideal gas is a simpli fied model
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of a real gas in which neither the size of the molecules nor
their mutual attraction is taken into consideration. All the
curves in Fig. 73 apply to such a simplified model, i. e. the
ideal gas.

STUDENT B: But the gas laws agree well with experimental
data, and in experiments we deal with real gases whose m~le­

cules have sizes of their own.

p

o

y

tsocaore

Fig. 73

Isotherm

p

TEACHER: Note that such experiments are never conducted
at extremely low temperatures. If a real gas has not been ex­
cessively cooled or compressed, it can be described quite ac­
curately by the ideal gas model. Note also that for the gases
contained in the air (for instance, nitrogen and oxygen), these
conditions are met at room temperatures and ordinary pres­
sures.

STUDENT B: Do you mean that if we plot the dependence
of the volume on the temperature in an isobaric process for a
real gas, the curve will coincide with the corresponding
straight line in Fig. 73 at sufficiently high temperatures but
will not coincide in the low temperature zone?

TEACHER: Exactly. Moreover, remember that on a sufficient­
ly large drop in temperature a gas will be condensed into a
liquid.

STUDENT B: I see. The fact that the curve of equation (106)
in Fig. 73 passes through the origin, or zero point, has no
physical meaning. But then maybe we should terminate the
curve before it reaches this point?

TEACHER: That is not necessary. You are just drawing the
curves for the model of a gas. Where this model can be applied
is another question.

Now I want to propose the Iollowing. Two isobarsare shown
in Fig. 74 in coordinate axes V and T: one corresponds to the
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pressure PI and the other to the pressure P2. Which of these
pressures is higher?

STUDENT A: Most likely, p 2 is higher than PI'
TEACHER: You answer without thinking. Evidently, you

decided that since that isobar is steeper, the corresponding
pressure is higher. This, however, is entirely wrong. The tan­
gent of the angle of inclination of an isobar equals (m/~) (RIp)

p

Fig. 74 Fig. 75

according to equation (106). It follows that the higher the
pressure, the less the angle of inclination of the isobar. Thus,
in our case, P2<Pl' We can reach the same conclusion by diffe­
rent reasoning. Let us draw an isotherm in Fig. 74 (see the
dashed line). It intersects isobar P2 at a higher value of the gas
volume than isobar Pl' We know that at the same temperature,
the pressure of the gas will be the higher, the smaller its
volume. This follows directly from the combined gas law [see
equation (103) or (104)]. Consequently, P2<Pl'

STUDENT A: Now, I'm sure I understand.
TEACHER: Then look at Fig. 75 which shows two isotherms

(the coordinate axes are p and V) plotted for the same mass of
gas at different temperatures, T 1 and T 2' Which is the higher
temperature?

STUDENT A: First I shall draw an isobar (see the dashed line
in Fig. 75). At a constant pressure, the higher the temperature
of a gas, the larger its volume. Therefore, the outermost iso­
therm T 2 corresponds to the higher temperature.

TEACHER: Correct. Remember: the closer an isotherm is to
the origin of the coordinates p and V, the lower the tempera­
ture is.



STUDENT B: In secondary school our study of the gas laws
was of much narrower scope than our present discussion. The
combined gas law was just barely mentioned. Our study was
restricted to Boyle and Mariette's, Gay-Lussac's and Charles'
laws.

TEACHER: In this connection, I wish to make some remarks
that will enable the laws of Boyle and Mariotte, Gay-Lussac
and Charles to be included in the general scheme. Boyle and
Mariotte's law (more commonly known as Boyle's law) des­
cribes the dependence of p on V in an isothermal process. The
equation for this law is of the form

const
P=-v- (107)

where the const== (mlll)RT.
Gay-Lussac s law describes the dependence of p on T in an

isochoric process. The equation of this law is

p = const T (108)

where the const= (mIll) (Rlv).
The law of Charles describes the dependence of V on T .in an

isobaric process. Its equation is

v= const T (109)

where the const=(m/~) (Rip). [Equation (109) evidently
repeats equation (106). ] I will make the following remarks con­
cerning the above-mentioned gas laws:

1. All these laws refer to the ideal.gas and are applicable
to a real gas only to the extent that the latter is described
by the model of the ideal gas.

2. Each of these laws establishes a relationship between
some pair of parameters of a gas under the assumption that the
third parameter is constant.

3. As can readily be seen, each of these laws is a corollary
of the combined gas law [see equation (104)] which establishes
a relationship between all three parameters regardless of any
special conditions.

4. The constants in each of these laws can be expressed, not
in terms of the mass of the gasand the constant third parameter,
but in terms of the same pair of parameters taken for a diffe­
rent state of the same mass of the gas. In other words, the
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gas laws can be rewritten in the following form
PovoP=y- (107a)

p= ~: T

V=~: T

(IOBa)

(I09a)

o'"----~--.,.=--v

STUDENT A: It seems I have finally understood the essence
of the gas laws.

TEACHER: In that case, let us goon. Consider the following
example. A gas expands insuch a manner that its pressure and
volume comply with the condition

pV2 = const (110)

We are to find out whether the gas is heated or, on the cont­
rary, cooled in such an expansion.

ST.UDENT A: Why must the temperature of the gas change?
TEACHER: If the temperature remained constant, that would

mean that the gas expands according to the law of Boyle and
p

Fig. 76 Fig. 77

Mariotte [equation (107)]. For an isothermal process pce(l/V),
while in our case the dependence of p on V is of a different na­
ture: pce(I/V2).

STUDENT .A: Maybe I can try to plot these relationships?
The curves will be of the shape shown in Fig. 76.

TEACHER: That's a good idea. What do the curves suggest?
STUDENT A: I seem to understand now. We can see that in

tracing the curve p ce (1 IV2) toward greater volumes, the gas
will gradually pass over to isotherms that are closer and
closer to the origin, i.e, isotherms corresponding to ever-
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decreasing temperatures. This means that in this expansion
process the gas is cooled. .

TEACHER: Quite correct. Only I would reword your answer.
It is better to say that such a gas expansion process is pos­
sible only provided the gas is cooled.

STUDENT B: Can we reach the same conclusion analytically?
TEACHER: Of course. Let us .consider two states of the gas:

PI, Vb T 1 and P2' V 5h T 2. Next we shall write the combined
gas law [see equation (104)] for each of these states

PIVl = .!!!:...RTl
~

P2V2= !!!:..RT2
~

We can write the given gas expansion process, according
to the condition, in the form

PIV~ = P2V:
Substituting the two preceding equations of the gas law in the
last equation, we obtain

m m
- RTlVI = - RT 2V2
~ ~

After cancelling the common factors we find that

TlV1=T2V2 (Ill)

From this equation it is evident that if the gas volume is,
for example, doubled, its temperature (in the absolute scale)
should be reduced by one half.

STUDENT A: Does this mean that whatever the process, the
gas parameters (p, V and T) will be related to one another in
each instant by the combined gas law?

TEACHER: Exactly. The combined gas law establishes a re­
lationship between the gas parameters regardless of any con­
ditions whatsoever.

Now let us consider the nature of the energy exchange bet­
ween a gas and its environment in various processes. Assume
that the gas is expanding. It will move back all bodies rest­
ricting its volume (for instance, a piston in a cylinder). Con­
sequently, the gas performs work on these bodies. This work
is not difficult to calculate for isobaric expansion of the gas.
Assume that the gas expands isobarically and pushes back a
piston of cross-sectional area S over a distance ~l (Fig. 77).
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The pressure exerted by the gas on the piston is p. Find the
amount of work done by the gas in moving the piston:

Fig. 78

p

where V 1 and V 2 are the initial and final volumes of the gas.
The amount of work done by the gas in nonisobaric expansion
is more difficult to calculate because the pressure varies in the
course of gas expansion. In the general case, the work done by
the gas when its volume increases from V 1 to V 2 is equal to the
area under the p (V) curve between the ordinates V 1 and V 2·

The amounts of work done by a gas in isobaric and in isother­
mal expansion from volume V 1 to volume V 2 are shown in
Fig. 78 by the whole hatched area and the crosshatched area,

respectively. The initial state of the
gas is the same in both cases.

Thus, in expanding, a gas does work
on the surrounding bodies at the expense
of part of its internal energy. The work
done by the gas depends upon the

L
mm~~l_ nature of the expansion process. Note

o also that if a gas is compressed, then
~ v work is done on the gas and, conse-

quently, its internal energy increases.
The performance of work, however, is

not the only method of energy exchange
between a gas and the medium. For example, in isothermal
expansion a gas does a certain amount of work A and, the­
refore, loses an amount of energy equal to A. On the other
hand, however, as follows from the principles enumerated
in § 18 [see equation (98)], a constant temperature of the
gas in an isothermal process should mean that its internal
energy U remains unchanged (let me remind you that U is
determined by the thermal motion of the molecules and that
the mean energy of the molecules is proportional to the tem­
perature T). The question is: what kind of energy is used to
perform the work in the given case?

STUDENT B: Evidently, the heat transmitted to the gas
from the outside.

TEACHER: Correct. In this' manner, we reach the conclusion
that a gas exchanges energy with the medium through at least
two channels: by doing work associated with a change in the
volume of the gas, and by heat transfer.
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The energy balance can be expressed in the following form

I1U=Q-A (113)

where ~U is the increment of internal energy of the gas cha­
racterized by an increase in its temperature, Q is the heat
transferred to the gas from the surrounding medium, and A
is the work done by the gas on the surrounding bodies. Equa­
tion (113) is called the first law of thermodynamics. Note that
it is universal and is applicable, not only to gases, but to any
other bodies as well.

STUDENT B: To sum up, we may conclude that in isothermal
expansion, all the heat transferred to the gas is immediately
converted into work done by the gas. If so, then isothermal
processes cannot take place in a thermally insulated system.

TEACHER: Quite true. Now consider isobaric expansion of
gas from the energy point of view.

STUDENT B: The gas expands. That means that it performs
work. Here, as can be seen from equation (106), the tempera­
ture of the gas is raised, i. e. its internal energy is increased.
Consequently, in this case, a relatively large amount of heat
must be transferred to the gas: a part of this heat is used to in­
crease the internal energy of the gas and the rest is converted
into the work done by the gas.

TEACHER: Very good. Consider one more example. A gas is
heated so that its temperature is increased by ~T. This is done
twice: once at constant volume of the gas and then at constant
pressure. Do we have to expend the same amount of heat to
heat the gas in both cases?

STUDENT A: I think so.
STUDENT B: I would say that different amounts are required.

At constant volume, no work is done, and all the heat is ex­
pended to increase the internal energy of the gas, i. e. to raise
its temperature. In this case

Qt == Ctl1T (114)

At constant pressure, the heating of the gas is inevitably
associated with its expansion, so that the amount ofwork done
is A==p(V-V 1} . The supplied heat Q2 is used partly to in­
crease the internal energy of the gas (to raise its temperature)
and partly to do this work. Thus

Q2 == C1L\T +P (V-VI) (115)

Obviously, Ql<Q,..
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TEACHER: I agree with Student B. What do you call the
quantity of heat required to raise the temperature of a body
by one degree?

STUDENT B: The heat capacity of the body.
TEACHER: What conclusion can be drawn from the last

example as regards the heat capacity of a gas?
STUDENT B: A gas has two different heat capacities: at

constant volume and at constant pressure. The heat capacity
at constant volume (which is factor C1 in the last two equa­
tions) is less than the heat capacity at constant pressure.

TEACHER: Can you express the heat capacity at constant
pressure in terms of C1, that is, the heat capacity at constant
volume? •

STUDENT B: I'll try. Let us denote the heat capacity at
constant pressure by C2' In accordance with the definition
of heat capacity, we can write C2=Q2/~T. Substituting the
value of Q2 from equation (115) we obtain

C = C + p (V - Vd (116)
, 1 ~T

TEACHER: You stopped too soon. If we apply the equation
of the combined gas law, we can write

p (V-Vt ) = : R(T-Tt )=: R!J.T

after substituting into equation (116), we obtain

C2 =C1+~ R (117)
Jl

In reference to one gram-molecule of the gas (m=Il), this
relationship is even more simple:

C2=Ct+R (lIB)

In conclusion, let us consider a certain cycle consisting- of
an isotherm, isochore and isobar (see Fig. 79a in which axes p
and V are used as the coordinate axes). Please draw this same
cycle (qualitatively) in a diagram with coordinate axes V
and T, and analyse the nature of energy exchange between the
gas and the medium in each element of the cycle.

STUDENT B: In a diagram with coordinate axes V and T,
the cycle will be of the form illustrated in Fig. 7gb.

TEACHER: Quite correct. Now please analyse the nature of
energy exchange between the gar; and the medium in the se­
parate elements of the cycle.
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Fig. 79

o

ta)

STUDENT B: In element 1-2, the gas undergoes isothermal
expansion. It receives a certain amount of heat from the out­
side and spends all this heat in doing work. The internal ener­
gy of the gas remains unchanged.

In element 2-3 of the cycle, the gas is heated isochorically
(at constant volume). Since its volume does not change, no
work is done. The internal energy of the gas is increased only

due to the heat transferred to the
gas from the outside.

In element 3-1 the gas is com­
pressed isobarically (at constant
pressure) and its temperature drops
as can be seen in Fig. 7gb. Work is
done on the gas, but its internal
energy is reduced. This means that
the gas intensively gives up heat to
the medium.

TEACHER: Your reasoning is abso­
lutely correct.

STUDENT A: Our discussion shows
me that I knew very little about
the gas laws. Do we have, to know
all this for the entrance examina­
tions? In my opinion, some of the
questions we discussed are beyond
the scope of the physics syllabus for

o~----~r students taking entrance ex'arnina­
tions.

TEACHER: If you carefully think
. over our discussion, you will see

that it only covered questions directly concerned with the
combined gas law in its general form or as applied in
certain special cases. Your confusion should be attributed not
to the imaginary stretching of the syllabus, but simply to the
fact that you have not thought over and understood the gas
laws thoroughly enough. Unfortunately, examinees frequently
don't care to go beyond a very superficial idea of the gas laws.



§ 21.

HOW DO YOU GO

ABOUT SOLVING

PROBLEMS ON GAS

LAWS?

(120)

STUDENT A: I would like to
look into the application of gas
laws in solving various types of
problems.

TEACHER: In my opinion, al­
most all the problems involving
gas laws that are assigned to
examinees are quite simple. Most
of them belong to one of the fol­
lowing two groups.

First group: Problems devised
on the basis of a change in the
state in a certain mass of gas;
the value of the mass is not used.
As a result of expansion, heating
and other processes, the gas goes
over from a certain state with

parameters PI, V 1 and T 1 to a state with parameters P2' V 2

and T 2. The parameters of the initial and final states are re­
lated to one another by the equation of the combined gas
law

(119)

The problem consists in finding one of these six parameters.
Second group: Problems in which the state of the gas does

not change but the value of the mass of the gas appears in the
problem. It is required to find either this mass when all the
parameters are known, or one of the parameters when the mass
and the other parameters are known. In such problems the
molecular weight of the gas must be known.

STUDENT B: I think the most convenient way of solving
problems of the second group is to use equation (104) of the
combined gas law.

TEACHER: Of course you can use this equation. To do this,
however, you must know the numerical value of the universal
gas constant R. As a rule, nobody remembers it. For this rea­
son, in practice it is more convenient to resort to the follow­
ing method: we assume that the gas is brought to standard
conditions, denoting the gas parameters at these conditions
by PS' Vs and T'; Then we can write the equation

pV PsVs
T ---r;-
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where
Vs = ~ x 22.4 Iitres

11
STUDENT B: In my opinion, this method of solution is by

no means simpler than the use of equation (104). Here we have
to remember three values: Ps===76 cm Hg, Ts===273 "K and
VsI (m/fl) =22.4 litres. It is obviously simpler to memorize
one value, the universal gas constant.

TEACHER: Nevertheless, my method is simpler because no­
body has any difficulty in remembering the three values you
indicated (pressure, temperature and the volume of the gram­
molecule of a gas under standard conditions). Assume that we
are to find the volumeof 58g of air at a pressure of 8 atm and a
temperature of 91°C. Let us solve this problem by the method
I proposed. Since the mass of the gram-molecule of air equals
29 g, we have 2 gram-molecules. At standard conditions they
occupy a volume of 44.8litres. From equation (120) we obtain

V=Vs;r: =44.8 (litres) X ~ ~ ~~ =7.5 Iitres

STUDENT B: I see you have assumed that Ps=== 1 atm. The
conditions of the problem, however, most likely referred to
technical atmospheres. Then it should be Ps=== 1.034 atm.

TEACHER: You are right. There is a difference between the
physical atmosphere (corresponding to standard pressure)
and the technical atmosphere. I simply neglected this
difference.

STUDENT A.: Could you point out typical difficulties in
solving problems of the first and second groups?

TEACHER: I have already mentioned that in my opinion
these problems are quite simple.

STUDENT A: But what mistakes do examinees usually make?
TEACHER: Apart from carelessness, the main cause of errors

is the inability to compute the pressure of the gas in some
state' or other. Consider a problem involving a glass tube
sealed at one end. The tube contains a column of mercury iso­
lating a certain volume of air from the medium. The tube can
be turned in a vertical plane. In the first position (Fig. BOa),
the column of air in the tube has the length 11 and in the second
position (Fig. BOb), 12 • Find the length 13 of the column of air
in the third position when the tube is inclined at an angle of a
to the vertical (Fig. BOc). We shall denote the atmospheric
pressure by PA in terms of length of mercury column, and the
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length of the mercury column in the tube by 8/. In the
first position, the pressure of the air in the tube is evidently
equal to the atmospheric pressure. In the second position, it
is equal to the difference (PA-8/), because the atmospheric
pressure is counterbalanced by the combined pressures of the
(a) mercury column and the air in­

side the tube. Applying the lawell of Boyle and Mariotte we write
~ ..b--., 1

1
PA= 1

2
(PA -M)

~ from which we find that the at-
(6) rnospheric pressure is

(C) PA == 8/-
1

12 1 (121)
2- 1

In the third position, a part of
the weight of the mercury column
will be counterbalanced by the
reaction of the tube walls. As a
result, the pressure of the air

Fig. 80 inside the tube turns out to be
equal to (PA-8L cosa). Using

the law of Boyle and Mariotte for the first and third states
of the gas, we can write

1JPA = Ls (pA - 81cosa)

from which the atmospheric pressure equals

P _ 8L 13cos ex, (122)
A - 13-11

Equating the right-hand sides of equations (121) and (122)
we obtain

12 Is cos ex,

12-11 = 13-11

from which we find the required length

1 = 11/ 2 (123)
3 12 - (12 -II) cos ex,

You can readily see that if cos a==l, then 13== / 2' i. e. we
have the second position of the tube, and if cos a==O, then
13=/ lt which corresponds to the first position of the tube.

STUDENT A: The first and second groups of problems in
your classification are clear to me. But, is it likely that the
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examination will include combinations of problems from the
first and second groups?

TEACHER: Why yes, such a possibility cannot be ruled out.
Let us consider the following problem. A t a pressure of 2 atm,
16 g of oxygen occupies a volume of 5 litres. How will the tem­
perature of the gas change if it is known that upon increase
in pressure to 5 atm the volume reduces by 1 litre?

STUDENT A: The mass, pressure and volume of the oxygen
being known, we can readily find its temperature. Thus, 16 g
of oxygen is 0.5 gram-molecule,which has a volume of 11.2 lit­
res at standard conditions. Next, we find that

Tt=TsPtVt =273 2x5 =244°K (124)
PsVs 1 X 11.2

TEACHER: Quite right. At the given stage you've handled
the problem as a typical one from the second group.

STUDENT A: Then, since we know the temperature T 1 of the
gas in the initial state, we can find the temperature .T2 in the
final state. Thus

T = T P2V2 = 244 5 x 4 = 488°K
2 1 PIVI 2 X 5

Comparing this result with equation (124), we find that the
temperature has been raised by 244 deg.

TEACHER: Your solution is absolutely correct. As you could
see, the second half of the problem was dealt with as a typical
one from the first group.

STUDENT 8: At the very beginning of our discussion, in
speaking of the possible, groups of problems, you said most
problems belong to these groups..Are there problems that differ
in principle from those of the first and second groups?

TEACHER: Yes, there are. In the problems of these groups,
it was assumed that the mass of the gas remained unchanged.
Problems can be devised, however, in which the mass of the
gas is changed (gas is pumped out of or into the container). We
will arbitrarily classify such problems in the third group.
There are no ready-made rules for solving such problems;
they require an individual approach in each case. However,
in each specific case, problems of the third group can be re­
duced to problems of the first two groups or to their combina­
tion. This can be illustrated by two examples.

Here is the first one. The gas in a vessel is sub ject to a pre­
ssure of 20 atm at a temperature of 27°C. Find the pressure
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of the gas in the vessel after one half of the mass of the gas
is released from the vessel and the temperature of the remainder
is raised by 50 deg. "

This problem resembles those of the first group, since
it involves a change in the state of the gas. With the change
in state, however, the mass of the gas also changes. In order to
make use of the combined gas law, we must study the change in
state of the same mass of the gas. We shall choose the mass of
the gas that is finally left in the vessel. We denote its final
parameters by P2' V 2 and T 2. Then T 2={273+27+50)=
=350 "K; V2=V, where V is the volume of the vessel; and P2
is the required pressure. How can we express the initial para-
meters of this mass of gas? •

STUDENT A: It will have the same temperature as the whole
mass of gas: T 1= (273+27)=300 "K; its volume will be one
half of the volume of the vessel, i. e. V/2; and its pressure is
the same as that of the whole mass of gas: PI =20 atm.

STUDENT B: I would deal with the initial parameters of the
above-mentioned mass of gas somewhat differently: T 1=

=300 "K: the volume is the same as
(0) for the whole mass of gas (V1=V)' but

00 0 00\. •• • the pressure is equal to one half of the
0000000\ •••• pressure of the whole mass of gas, i. e.
00 00 I.~ •.• Pl=IOatm.
00 0 0001 •••••

00 0 0 o~.. .. TEACHER: Since the pressure and
volume appear in the equation in the

(6) form of their product, both of your
.0. • o. 0 • proposals, though they differ, lead to
o 0 0 0 o e the same result. For this reason, we
• 0. 0 0 ••0. ~ ~ f• could have. refrained rom discussing
~ 0

0• 0 0 o. 0

0 0• o. 0 • 0 these differences if they didn't happen
to be of interest from the physical

Fig. 81 point of view. We shall arbitrarily
call the molecules of the portion of

the gas that finally remains in the vessel "white" molecules,
and those of the portion to be released from the vessel, "black"
molecules. Thus, we have agreed that the white molecules
remain in the vessel and the black molecules are released
from it. The initial state of the gas can be treated in two
ways: (I) the black and white molecules are separated so that
macroscopic volumes can be separated out in the vessel con­
taining only white or only black molecules (Fig. 81a); (2) the
white and black molecules are thoroughly mixed together so
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that any macroscopic' volume contains a practically equal
number of each kind of molecules (Fig. 8Ib). In the first case,
molecules of each kind form their own gaseous "body" with a
volume of V/2 which exerts a pressure of 20 atm on the walls
and on the imaginary boundary with the other body. In the
second case, molecules of both kinds are distributed uniformly
throughout the whole volume V of the vessel, and the molecules
of each kind exert only one half of the pressure on the walls
(at any place on the walls, one half of the blows come from
white molecules and the other half from black ones). In this
case, V l==V and Pl=10 atm. In connection with this last
remark, let us recall the law of partial pressures: the pressure
of a mixture of gases is equal to the sum of the pressures of the
component gases. I wish to emphasize that here we are dealing
with a mixture of gases, where molecules of all kinds are in­
timately mixed together.

STUDENT B: I think the second approach is more correct
because the molecules of both kinds are really mixed together.

TEACHER: In the problem being considered, both approaches
are equally justified. Don't forget that our a priori division
of the molecules into two kinds was entirely arbitrary.

But let us return to the solution of· the problem..: We write
the equation of the combined gas law for the mass of the gas
remaining in the vessel:

10 V P2V
300 == 350

from which we find that P2=11.7 atm.
Now, consider the-following problem. A gas is in a vessel of

volume V at a pressure of po. It is being pumped out of the
vessel by means of a piston pump with a

I ~
stroke volume of v (Fig. 82). Find the

v lJ v number, n, of strokes required to lower the
. . pressure of the gas in the vessel to Pn'

Fig. 82 STUDENT A: This problem seems to be
quite simple: n strokes of the piston lead

to an n-fold increase in the volume of the gas by the volume
v. Therefore, we can write the law of Boyle and Mariotte in
the form

PoV == Pn (V + nv)

from which we can find the number of strokes n,
TEACHER: To what mass of gas does your equation refer?
STUDENT A: To the mass that was initially in the vessel.
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TEACHER: But even after the first stroke a part of this mass
leaves the system entirely: when the piston moves to the left
it closes valve A and opens valve B through which the gas
leaves the system (see Fig. 82). In other words, the n-Iold
increase of the volume of the gas by the amount v does not
refer to the same mass of gas. Consequently, your equation is
incorrect.

Let us consider each stroke of the piston separately. We shall
begin with the first stroke. For the mass of gas that was
initially in the vessel we can write

PoV = Pt (V +v)

where PI is the pressure of the gas after the piston has comp­
leted the first working stroke and is in the extreme right­
hand position. Then the piston returns to its initial left-hand
position. At this, as I previously mentioned, valve A is closed,
and the mass of the gas in the vessel is less than the initial
mass. Its pressure is PI. For this mass of gas we can write the
equation

P.V = P2 (V+v)

where P2 is the pressure of the gas at the end of the second
stroke. Dealing consecutively with the third, fourth and sub­
sequent strokes of the piston, we obtain a system of equations
of the law of Boyle and Mariotte:

PoV = PI (V+v) 1
PIV=P2(V+V) I
P2V = P3 (V+ v) } (125)

p~_:V ~ ~n '(l;+vi J
Each of these equations refers to a definite mass of gas. Sol­
ving the system of equations (125) we obtain

p" =po (v:vr
Taking the logarithm of this result, we finally obtain

log (Pn)
11= Po (126)

log (v:J
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PROBLEMS

39. A glass tube with a sealed end is completely submerged in a ves­
sel with mercury (Fig. 83). The column of air inside the tube has a length
of 10 em. To what height must the upper end of the tube be raised above
the level of the mercury in the vessel so that the level of the mercury
inside the tube is at the level of the mercury in the vessel? Assume stan­
dard atmospheric pressure. Calculate the mass of the air inside the tube
if its cross-sectional area equals I ern". The temperature is 27°C.

40. A glass tube, one end of which is sealed, is submerged with the open
end downward into a vessel with mercury (Fig. 84). How will the level
of the mercury in the tube change if the temperature is raised from 27°
to 77°C? Neglect the thermal expansion of the tube. Assume standard
atmospheric pressure. Find the mass of the air inside the tube if its cross­
sectional area is 0.5 em",

fa)

.-El8-
Fig. 83- Fig. 84 Fig. 85

41. The air in a vessel with a volume of 5 litres has a temperature of
27°C and is subject to a pressure of 20 atm. What mass of air must be re­
leased from the vessel so that its pressure drops to 10 atm?

42. Compute the amount of work done by a gas which is being lsobarl­
cally heated from 20° to 100°C if it is in a vessel closed by a movable
piston with a cross-sectional area of 20 ern" and weighing 5 kgf. Consider
two cases: (1) the vessel is arranged horizontally (Fig. 85a), and (2) the
vessel is arranged vertically (Fig. 85b). The initial volume of the gas is
5 litres. Assume standard atmospheric pressure.

43. A column of air 40 em long in a glass tube with a cross-sectional
area of 0.5 em" and arranged vertically with the sealed end upward, is
isolated by a column of mercury 8 em long. The temperature is 27°C. How
will the length of the air column change if the tube is inclined 60° from the
vertical and the temperature is simultaneously raised by 30 deg? Assume
standard atmospheric pressure. Find the mass of the air enclosed in the
tube.

44. What is the mass of the water vapour in a room of a size 6 mX
X 5 rnX 3.5 m if, at a temperature of 15°C, the relative humidity is 55%?
Will dew be formed if the air temperature drops to 10°C? What part
of the total mass of the air in the room is the mass of the water vapour if
the air pressure equals 75 em Hg?
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What is a field? How is a field described? How does motion
take place in a field? These fundamental problems of physics
can be most conveniently considered using an electrostatic
field as an example.
We shall discuss the motion of charged bodies in a uniform
electrostatic field. A number of problems illustrating Cou­
lomb's law will be solved.



§ 22.

LET US DISCUSS

FIELD THEORY

TEACHER: Let us discuss the
field, one of the basic physical
concepts. For the sake of definite- .
ness, we shall deal with elect­
rostatic fields. What is your idea
of a field? What do you think it
is?

STUDENT A: I must confess
that I have a very vague idea of
what a field really is. A field
is something elusive, invisible,
a kind of spectre. At the same
time, it is said to be present
throughout space. I do not object
to the field being defined as
a material entity. But this means
nothing to me. When we speak

of matter, I understand what we are talking about. But when
we speak of a field, I give up.

STUDENT B: To me, the concept of the field is quite
tangible. Matter in any substance is in concentrated form, as
it were. In a field, on the contrary, matter is "spread" through­
out space, so to speak. The fact that we cannot see a field with
the naked eye doesn't prove anything. A field can be "seen"
excellently by means of relatively simple instruments. A field
acts as a transmitter of interactions between bodies. For in­
stance, an electrostatic field transmits interactions between
fixed electric charges. Each charge can be said to set up a field
around itself. A field set up by one charge influences another
charge and, conversely, the field set up by the second charge
influences the first charge. Thus, Coulomb (electrostatic) in­
teraction of charges is accomplished.

STUDENT A: But couldn't we get along without any
"go-betweens"? What prevents 'us from supposing that one
charge acts directly on another charge?

STUDENT B: Your supposition may raise serious objections.
Assume that at some instant- one of the charges is displaced
(i.e. "budges") for some reason. If we proceed from the sup­
position of, "direct interaction", we have to conclude that the
second charge must also "budge" at the very same instant.
This would mean that a signal from the first charge reaches
the second charge instantaneously. This would contradict the
basic principles of the theory of relativity. If, however, we have
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a transmitter of interactions, l.e. a field, the signal is propaga­
ted from one charge to the other through the field. However
large the velocity of propagation, it is always finite. There­
fore, a certain interval of time exists during which the first
charge has stopped "budging" and the second has not yet star­
ted. During this interval, only the field contains the signal
for "budging".

STUDENT A: All the same, I would like to hear a precise
definition of the field.

TEACHER: I listened to your dialogue with great interest.
I feel that Student B has displayed a keen interest in problems
of modern physics and has read various popular books on phy­
sics. As a result, he has developed what could be called initia­
tive thinking. To him the concept of the field is quite a real,
"working" concept. His remarks on the field as a transmitter of
interactions are quite correct. Student A, evidently, confined
himself to a formal reading of the textbook. As a result, his
thinking is inefficient to a considerable extent. I say this,
of course, without any intention to offend him or anyone else,
but only to point out that many examinees feel quite helpless
in like situations. Strange as it may be, a comparatively large
number of students almost never read any popular-science li­
terature. However, let us return to the essence of the problem.
(To Student A) You demanded a precise definition of the field.
Without such a definition the concept of the field eludes you.

.However, you said that you understand what matter is. But do
you really know the precise definition of matter?

STUDENT A: The concept of matter requires no such defini­
tion. Matter can be "touched" with your hand.

TEACHER: In that case, the concept of the field also "requi­
res no such definition"; it can also be "touched", though not
with your hand. However, the situation with the defini­
tion is much more serious. To give a precise, logically fault­
less definition means to express the concept in terms of some
more "primary" concepts. But what can be done if the given
concept happens to be one of the "primary" concepts? Just try
to define a straight line in geometry. Approximately the same
situation exists with respect to the concepts of matter and the
field. These are primary, fundamental concepts for which we
can scarcely hope to find a clear-cut blanket definition.

STUDENT A: Can we, nevertheless, find some plausible
definition?

TEACHER: Yes, of course. Only we must bear in mind that
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no such definition can be exhaustive. Matter can exist in va­
rious forms. It can be concentrated within 8 restricted region
of space with more or less definite boundaries (or, as they say,
it can be "localized"), but, conversely, it can also be "delo­
calized". The first of these states of matter can be associated
with the concept of matter in the sense of a "substance", and
the second state with the concept of the "field". Along with
their distinctive characteristics, both states have common
physical characteristics. For example, there is the energy of
a unit volume of matter (as a substance) and the energy of
a unit volume of a field. We can speak of the momentum of a
unit volume of a substance and the momentum of a unit volume
of a field. Each kind of field transmits a definite kind of
interaction. It is precisely from this interaction that we can
determine the characteristics of the field at any required
point. An electrically charged body, for instance, sets up an
electrostatic field around itself in space. To reveal this field
and measure its intensity at some point in space, it is ne­
cessary to bring another charged body to this point and to
measure the force acting on it. It is assumed that the second
charged body is sufficiently small so that the distortion it
causes in the field can be neglected.

The properties of matter are inexhaustible, the process of
seeking knowledge is eternal. Gradually, step by step, we
advance along the road of learning and the practical applica­
tion of the properties of matter that surrounds us. In our prog­
ress we have to "stick on labels" from time to time which are
a sort of landmarks along the road to knowledge. Now we label
something as a "field". We understand that this "something" is
actually the primeval abyss. We knowmuch about this abyssWi

have called a "field", and therefore we can employ this newly
introduced concept more or less satisfactorily. We know much,
but far from all. An attempt to give it a clear-cut definition
is the same as an attempt to measure the depth ofa bottomless
chasm.

STUDENT B: I think that the concept of the field, as well as
any other concept emerging in the course of our study of the
material world, is inexhaustible. This, exactly, is the reason
why it is impossible to give an exhaustive, clear-cut defini­
tion of a field.

TEACHER: I completely agree with you.
STUDENT A: I am quite satisfied with your remarks about

substance and the field as two states of matter-localized and
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unlocalized. But why did you begin this discussion about the
inexhaustibility of physical concepts and the eternity of
learning? As soon as I heard that, clarity vanished again and
everything became sort of blurred and vague.

TEACHER: I understand your state of mind. You are seeking
for some placid definition of a field, even if it is not absolu­
tely precise. You are willing to conscientiously memorize
this definition and hand it out upon request. You don't wish to
recognize that the situation is not at all static but, on the
contrary, a dynamic one. You shouldn't believe that every­
thing becomes blurred and vague. I would say that everything
becomes dynamic in the sense that it tends toward change.
Any precise definition, in itself, is something rigid and final.
But physical concepts should be investigated in a state of their
development. That which we understood to be the concept of
the field yesterday appreciably differs from what we under­
stand by this concept today. Thus, for instance, modern phy­
sics, in contrast to the classical version, does not draw a dis­
tinct boundary between the field and substance. In modern
physics, the field and substance are mutually transformable:
a substance may becomea field and a field may become a sub­
stance. However, to discuss this subject in more detail now
would mean getting too far ahead.

STUDENT B: Our discussionon physics has taken an obvious­
ly philosophical turn.

TEACHER: That is quite natural because any discussion of
physical conceptions necessarily presupposes that the parti­
cipantspossess a sufficiently developed ability for dialectical
thinking. If this ability has not yet been cultivated, we have,
even against our will, to resort to digressions of a philo­
sophical nature. This is exactly why I persist in advising you
to read more and more booksof various kinds. Thereby you will
train your thinking apparatus, make it more flexibleand dy- .
namic. In this connection, invaluable aid can be rendered to
any young person by V. I. Lenin's book Materialism and
Empiriocriticism. I advise you to read it.

STUDENT A: But that is a very difficult book. It is studied
by students of institutes and universities.

TEACHER: I don't insist on your studying this book. It
certainly was not intended for light reading. Simply try to
read it through carefully. Depending on your background, this
book will exert a greater or lesser influence on your mode of
thinking. In any case, it will be beneficial.
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In conclusion, I wish to mention the following: Student A is
obviously afraid of vagueness or indefiniteness; he demands
maximum precision. He forgets that there is a reasonable limit
to everything, even precision. Try to imagine a completely
precise world about which we have exhaustive information.
Just conjure up such a world and then tell me: wouldn't you be
amazed at its primitiveness and inability to develop any
further? Think about all this and don't hurry with your con­
clusions. And now, for the present, let us attempt to approach
the problem from another angle. I will pose the following
question: "How is a field described?" I knowthat many people,
after getting the answer, will say: "Now we know what the
field is".



§ 23.

HOW IS AN

ELECTROSTAIIC FIELD

DESCRIBED?

TEACHER: Thus, we continue
the discussion that we began in
the preceding section by asking:
"How is an electrostatic field
described?"

STUDENT B: An electrostatic
field is described by means of a
vectorial force characteristic
called the intensity of the electric
field. At each point in the field,
the intensity E has a definite
direction and numerical value.
If we move from one point in a
field to another in such a manner
that the directions of the inten­
sity vectors are always tangent
to the direction of motion, the

paths obtained by such motion are called the lines of force
of the field. Lines of force are very convenient for graphically
representing a field.

TEACHER: Good. Now let us reason more concretely. The
Coulomb force of interaction between two charges q1 and q2

spaced a distance of r apart can be written in the form

This can be rewritten as

F = qtq2
e ,J, (127)

E (r) = ~~ (128)

Fe=E(r)qt (129)

Equation (128) signifies that charge qi sets up a field
around itself, whose intensity at a distance of r from the
charge equals qfr». Equation (129) signifies that this field
acts on charge Q2' located at a distance of r from charge qi.
with a force E (r)q2. Equation (127) could be written thus
because a "go-between"-the quantity E, the characteristic of
the field-was introduced. Try to determine the range of ap­
plication of equations (127), (128) and (129).

STUDENT B: Equation (127) is applicable for two point
charges. That means that the range of application of equations
(128) and (129) is the same. They were obtained from equation
(127).
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TEACHER: That is correct only with respect to equations
(127) and (128). Equation (129) has a much wider range of
application. No matter what sets up the field E (a point charge,
a set of point charges or of charged bodies of arbitrary shape),
in all cases the force exerted by this field on charge q0 is
equal to the product of this charge by field intensity at the
point where charge qo is located. The more general version of
1u at ion (129) has the following vectorial form

~ ~ ~

Fe = E (r) qo (130)

where the arrows, as usual, serve to denote the vectors. It is
evident from equation (130) that the direction of the force
acting on charge qo at the given point of the field coincides
with the direction of the field intensity at this point if charge
qo is positive. If charge qo is negative, the direction of the
force is opposite to the intensity.

Here we can sense the independence of the concept of the
field. Different charged bodies set up different electrostatic
fields, but each of these fields acts on a charge situated in
it according to the same law (130). To find the force acting on
a charge, you must first calculate the intensity of the field
at the point where the charge is located. Therefore, it is
important to be able to find the intensity of the field set up
by a system of charges. Assume that there are two charges, q1
and q2' The magnitude and direction of the intensity of the
field set up by each of these charges can readily be found for
any point in space that may interest us. Assume that at a cer-

-+
tain point, specified by the vector " these intensities are des-
cribed by the vectors E1 (r) and E2 (r). To find the resultant
intensity at point ;, you must add vectorially the intensities
due to the separate charges

-+-+ -+ -+ ~-+

£(')=£I(,)+E 2 ( , ) (131)

I repeat that the intensities must be added vectorially. (To
Student A) Do you understand?

STUDENT A: Yes, I know that intensities are added vectorial­
ly.

TEACHER: Good. Then we can check how well you can use
this knowledge in practice. Please draw the lines of force of
the field of two equal and opposite charges (+ql and -q2)
assuming that one of the charges (for instance, +ql) is several
times greater than the other.
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STUDENT A: I'm afraid I can't. We never discussed such
fields before.

TEACHER: What kind of fields did you study?
STUDENT A: I know what the picture of the lines of force

looks like for a fieldset up by two point charges of equal mag­
nitude. I have drawn such a picture in Fig. 86.

TEACHER: Your drawing is somewhat inaccurate though
qualitatively it does represent the force lines of a field set up

by two charges of the same magni­
tude but of opposite sign. Can't you
vizualize how this picture will chan­
ge as one of the charges increases?

STUDENT A:- We never did any­
thing like that.

Fig. 86 TEACHER: In that case, let us
use the rule for the vectorial addi­

tion of intensities. We shall begin with the familiar case
when the charges are equal (Fig. 87a). We select three points
A, Band C and construct a pair of intensity vectors for each

-? ~ ~ ~

point: Eland E 2 (E 1 for the field of charge +q 1 and E 2 for
the field of charge .-q2). Then we add the vectors Eland E2
for each of these points to obtain the resultant vectors EA ,
-+ --?

EBand Ee . These vectors must be tangent to the lines of force
of the field at the corresponding points. These three vectors
indicate the behaviour of the lines of force which are shown
in Fig. 88a. Compare this drawing with Fig. 86 proposed by
you. Note your inaccuracies in the behaviour of the lines of
force to the left of charge -q and to the right of charge +q.

Assume now that charge +ql is doubled in magnitude, and
charge -q 2 is halved (Fig. 87b). We select, as before, three
points A, Band C. First we construct the intensity vectors for

~ ~ ~

these points and then find their resultants: EA , E B and Ee .
The picture of the lines of force corresponding to these vectors
is shown in Fig. 88b. ,

Finally, we assume that ql is doubled again and that q2 is
halved again (Fig. 87c). Next we construct the resultant ve-

~ --? ~

ctors EA , E B and Ee for points A, Band C. The corresponding
picture of the lines of force is shown in Fig. BBe.

As you see, the influence of charge +ql becomes greater
with an increase in its relative magnitude; the field of charge
+ql begins to repress the field of charge -q2·
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STUDENT A: Now I understand how to construct a picture of
the lines of force for a field set up by a system of several
charges.

TEACHER: Let us continue our discussion of an electrostatic
field. This field has one important property which puts it in
the same class with gravitational fields, namely: the work done
by the forces of the field along any closed path equals zero. In
other words, if the charge travelling in the field returns to

(OJ its initial point of departure,
the work done by the forces of
the field during this motion is
equal to zero. Over certain
portions of the path this work
will be positive and over

(a)

Fig. 87 Fig. 88

others negative, but the sum of the work done will equal zero.
Interesting consequences follow from this property of an elect­
rostatic field. Can you name them?

STUDENT B: No, I can't think of any.
TEACHER: I'll help you. You probably have noted that the

lines of force of an electrostatic field are never closed on
themselves. They begin and end in charges (beginning in po-
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sitive charges and terminating in negative ones) or they end at
infinity (or arrive from infinity). Can you associate this cir­
cumstance with the above-mentioned property of the elect­
rostatic field?

STUDENT B: Now I seem to understand. If a line of force in
an electrostatic field was closed on itself, then by following it
we could return to the initial point. As a charge moves along a
line of force, the sign of the work done by the field evidently
does not change and, consequently, cannot be equal to zero.
On the other hand, the work done along any closed path must
a be equal to zero. Hence, lines of force of

an electrostatic field cannot be closed on
themselves.

TEACHER: Quite correct. There is one
more consequence following from the

b above-mentioned property of the electros­
tatic field: the work done in moving a

Fig. 89 charge fromone point of the field to another
does not depend upon the path followed.

We can move a charge from point a to point b, for instance,
along different paths, 1 and 2 (Fig. 89). Let us denote by A 1 the
amount of work done by the forces of the field to move the
charge along path 1 and that along path 2 by A 2' Let us accomp­
lish a complete circuit: from point a to point b along path 1
and from point b back to point a along path 2. During the re­
turn along path 2, the work done will be -A 2. The total work
done in a complete circuit is ,A 1+ (-A 2)=A I-A 2. Since
the work done along any path closed on itself equals zero,
then A l=A 2. The fact that the work done in moving a charge
is independent of the chosen path but depends only on the
initial and final points, enables this value to be used as a
characteristic of the field (since it depends only upon the cho­
sen points of the field!). Thus another characteristic of an elec­
trostatic field, its potential, is introduced. In contrast to the
intensity, this is a scalar quantity since it is expressed in
terms of the work done.

STUDENT B: We were told in secondary school that the
concept of the potential of a field has no physical meaning.
Only the difference in the potentials of any two points of the
field has a physical meaning.

TEACHER: You are quite right. Strictly speaking, the pre­
ceding discussion enables us to introduce precisely the diffe­
rence in the potentials; the potential difference between the
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two points a and b of the field (denoted by CPa-q:>b) is defined
as the ratio of the work done by the forces of the field in
moving charge qo from point a to point b, to charge q.; i.e,

ACPa-CPb = ;;b (132)

However, if we assume that the field is absent at infinity
(i. e. q:>oo=O), then equation (13.2) takes the form

Aa -+ 0)

q:>a=-qo- (133)

In this manner, the potential of the field at the given point
can be determined in terms of the work done by the forces of
the field in moving a positive unit charge from the given
point to infinity. If the work is regarded as being done not
by the field, but against the forces of the field, then the
potential at a given point is the work that must be done in
moving a positive unit charge from infinity to the given point.
Naturally, this definition rules out experimental measurement
of the potential at the given point of the field, because we
cannot recede to infinity in experiment. Precisely for this
reason it is said that the difference of the potentials of two
points in the field has a physical meaning, while the potential
itself at some point has not. We can say that the potential at
a given point is determined with an accuracy to an arbitrary
constant. The value of the potential at infinity is commonly

. taken as this constant. The potential is measured from this
value. It is assumed, for convenience, that the potential at
infinity equals zero.

Within the scope of these assumptions, the potential of a
field, set up by a point charge qi. measured at a point a dis­
tance , from the charge, equals

<p (r) = .~l ( 134)

You should have no difficulty in determining the potential
~

of a field, set up by several point charges, at some point r.
STUDENT B: We shall denote the value of the potential at

~ ~ ~

point r due to each of the charges separately as cP 1 (r), q:> 2 (r),
etc. The total potential cp(r) is equal, evidently, to the algeb­
raic sum of the potentials from the separate charges. Thus

~ -+ ~

<p (r) = CPt (r) + CP2 (r) + ... (135)
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In this summation, the potential from a positive charge is
taken with a plus sign and that from a negative charge with a
minus sign.

TEACHER: Quite correct. Nowlet us consider the concept of
equipotential surfaces. The locus of the points in a field
having the same potential is called an equipotential surface
(or surface of constant potential). One line of force and one
equipotential surface pass through each point in a field. How
are they oriented with respect to each other?

STUDENT B: I know that at each point the line of force and
the equipotential surface are mutually perpendicular.

TEACHER: Can you prove that?
STUDENT B: No, I probably can't.
TEACHER: This proof is not difficult. Assume that the line

of force aa, and the equipotential surface S (Fig. 90) pass

Fig. 90 Fig. 91

through a certain point a. The field intensity at point a is
. ~

described by vector Ea. Next we shall move charge qo from
point a to a certain point b which lies on the equipotential
surface S at a short distance Sl from point a. The work done
in this movement is expressed by the equation

A = Fe~l cos ex = Eaqo~l cos ex (136)

where a is the angle between vector fa and the direction of
the movement. This same amount of work can be expressed as
the difference in the field potentials at points a and b. Thus we
can write another relationship:

A=qo(CPa-CPb) (137)
Since both points a and b lie on the same equipotential

surface, then it follows that CPa=CPb' This means that accor­
ding to equation (137), the work A should be equal to zero.
Substituting this result into equation (136), we obtain

Eaqodlcosa=O (138)
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Of all the factors in the left-hand side of equation (138),
only cos a can be equal to zero. Thus, we conclude that a=
=90°. It is clear to you, I think, that this result is obtained
for various directions of movement ab, provided these move­
ments are within the limits of the equipotential surface S.
The curvature of the surface does not impair our argument
because the movement ~l is very small.

Along with the use of lines of force, cross-sections of equi­
potential surfaces are employed to depict an electrostatic
field graphically. Taking advantage of the fact that these
lines and surfaces are mutually perpendicular, a family of
cross-sections of equipotential surfaces can be drawn from a
known family of lines of force, or vice versa.

(To Student A) Will you try to draw the cross-sections of
equipotential surfaces Ior the case shown in Fig. 88a?To avoid
confusing them with the lines of force, draw the cross-sections
of the surfaces with dashed lines.

STUDENT A: I' shall draw the dashed lines so that they
always intersect the lines of force at right angles. Here is my
drawing (Fig. 91).

TEACHER: Your drawing is correct.



§ 24'-

HOW DO LINES OF FORCE

BEHAVE NEAR
THE SURFACE

OF A CONDUCTOR?

TEACHER: Let us introduce
some conducting body into an
electrostatic field. You know well
that a conductor in a field is
characterized by a quantity called
the capacitance. But did you
ever ask yourself why we speak of
the capacitance of a conductor,
but never of a dielectric?

STUDENT A: It never occurred
to me.
TEAC~ER: How do you define

the capacitance of an isolated
conductor?

STUDENT A: It is the quantity
of electricity that must be im­
parted to the conductor to in­

crease its potential by one unit.
TEACHER: Mind you that you speak here of the potential as

being a characteristic of a body. But up till now the potential
was regarded as a characteristic of the field and, as such, it
varied from point to point. The potential is a function of the
coordinates of the corresponding point of a field. Can we speak
of it as being a characteristic of a body? If we can, then
why?

STUDENT B: This is possible if the body is a conductor. The
fact is that all points of a conductor placed in an electrosta­
tic field have the same potential. A conductor is an equipo­
tential body.

TEACHER: On what do you base your statement?
STUDENT B: A conductor has free charges. Therefore, if a

difference in potential existed between any two points of the
conductor, there would be an electric current between these
points. This is obviously impossible.

TEACHER: Quite correct. It can be said that when a conduc­
tor is brought into an electrostatic field, the free charges in
the conductor are redistributed in such a manner that the
field intensity within the conductor becomes equal to zero.
This actually signifies that all the points of the conductor
(both inside and on its surface) have the same potential. The
uniformity of the potential at all points of a conductor enable
us to speak of the potential of the conductor as a body. I wish
to point out that there are no free charges in a dielectric and
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therefore no redistribution of charges can occur. Incidentally,
just how are the free charges redistributed in a conductor?

STUDENT B: They are concentrated on its surface. The grea­
ter the curvature of any projecting element of the conductor,
the denser the charges. The maximum charge density will be
at a sharp point.

TEACHER: Exactly. Now it is clear that a conductor in an
electrostatic field is an equipotential body. It follows that
the surface of the conductor is an equipotential surface. On
the basis of this conclusion tell me how the lines of force of
an electrostatic field behave near the surface of a conductor?

Fig. 92

STUDENT B: Since the lines of force are always perpendicular
to equipotential surfaces, they must "run" into the surface of
the conductor at right angles.

TEACHER: Unfortunately examinees frequently don't know
this. You should have no difficulty in drawing a picture of
the lines of force in the field of a parallel-plate capacitor with
a metal ball between the plates. As a rule, examinees are
greatly puzzled by this question.

STUDENT B: The lines of force should approach the plates of
the capacitor and the surface of the ball at right angles. Thus,
the picture of the lines of force will resemble that shown in
Fig. 92.

TEACHER: Everything is correct. I can't understand why
some examinees think that the lines of force must bypass the
ball.

Now let us consider the following problem. A point charge
+q is located at a distance' from the earth's surface. It
should induce a charge of opposite sign in the earth. As a
result, a force of electric attraction is developed between the
charge and the earth. Find this force. I suggest that both of
you think about this problem.
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STUDENT A: The charge induced in the earth should be equal
to the charge +q. It follows that the required force equals
q2/r2.

STUDENT B: I don't agree with this. Student A assumed that
the charge induced in the earth is concentrated at one point
(point A in Fig. 93a). Actually, however, the induced charge
is not concentrated at one point but is distributed over the
surface of the earth. For this reason, we know beforehand
that the required force must be less than q2/r2.

(a) + q

r

A

Fig. 93

TEACHER: I fully agree with you. How then shall we go
about finding the force of attraction between the charge and
the earth?

STUDENT B: It seems to me that we must examine the field
between the charge and the earth's surface. The surface of the
earth is evidently an equipotential one. Consequently, near
the earth's surface the equi potential surfaces of the field must
be close in shape to planes. At the same time, the equipoten­
tial surfaces in the vicinity of the charge must be spherical.
'This enables us to draw a qualitative picture of the equipo­
tential surfaces (or, more exactly, of the cross-sections of these
surfaces). When this is done, we can draw the lines of force
according to the familiar rule. This has been done in Fig. 93b,
'where the lines of force are solid and the cross-sections of the
surfaces are dashed lines .
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TEACHER: Continue your line of reasoning, please. Doesn't
your picture of the lines of force in Fig. 93b remind you of
something?

STUDENT B: Yes, of course. This picture certainly resembles
the one with the lines of force of two point charges that are
equal in magnitude and opposite in sign. I shall draw this
picture at the right (see Fig. 93c). Now everything is quite
clear. In both cases (see Fig. 93b and c), the appearance of
the field near charge +q is the same.According to equation
(130) this means the same force acts on charge +q in both
cases. Thus, the required force is q2J (4r 2).

TEACHER: Your reasoning is faultless. This problem clearly
shows that the concept of the field may be exceptionally
fruitful.



§ 25.
HOW DO YOU DEAL

\\lITH MOTION

IN A UNIFORM

ELECTROSTATIC FIELD?

TEACHER: Assume that a char­
gedbody moves in a uniform elec­
trostatic field, i.e, in a field
where each point has the same
intensity E both in magnitude
and direction. An example is
the field between the plates of a
parallel-plate capacitor. Can you
see any resemblance between the
problem on the motion of a char­
ged body in a uniform electro­
static field and any problems con­
sidered previously?

STUDENT B: It seems to me
that it closely resembles the
problem of the motion of a body
in a gravitational field. Over

relatively short distances, the gravitational field of the
"earth can be regarded as uniform.

TEACHER: Exactly. And what is the difference between
motion in an electrostatic field and in a gravitational
field?

STUDENT B: Different forces act on the bodies. In an elect­
rostatic field, the force acting on the body is Fe=Eq (it
imparts an acceleration of ae=Eq/m to the body). The force
in a gravitational field is P=mg (imparting the acceleration g
to the body). Here m is the mass of the body and q is its elect­
ric charge.

TEACHER: I wish that all examinees could understand the
simple truth that the motion of a body in any uniform field is
kinematically the same. What differs is only the value of the
force acting on the body in different fields. The motion of a
charged body in a uniform electrostatic field is of the same
nature as the motion of an ordinary stone in the earth's field
of gravitation. Let us consider a problem in which the motion
of a body takes place simultaneously in two fields: gravita­
tional and electrostatic. A body of mass m with a charge +q is
thrown upward at an angle of (J., to the horizontal with an initial
velocity Vo· The body travels simultaneously in the field of
gravitation and in a uniform electrostatic field with an inten­
sity E. The lines of force of both fields are directed vertically
downward (Fig. 94a). Find the time of {light Tv range L 1 and
maximum height reached HI.
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STUDENT A: There is one point here that I don't understand.
In comparison with the corresponding problem in § 5, an ad­
ditional force Fe acts on the body in the given problem. This
force is directed vertically downward and therefore should not
influence the horizontal motion of the body. Why then, in the
given case, does it influence the range of flight L I?
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(143)

TEACHER: The range depends upon the time of flight, and
this time is determined from a consideration of the vertical
motion of the body.

Now let us make a slight change in the conditions of the
problem: assume that the lines of force of the electrostatic
field are directed at an anglePto thevertical (Fig. 94b). As be­
fore, find the time of flight T 2, range L 2 and maximum height
reached H 2-

STUDENT A: First I shall resolve force'Fe into two compo­
nents: vertical (Fecos P) and horizontal (Fe sin P). This prob­
lem reminds me of the problem with the tail wind in § 5. Here
the component Fe sin Pplays the part of the "forceof the wind".

TEACHER: Quite right. Only remember that in contrast to
the problem with the tail wind you mentioned, here we
have a different vertical force, namely: mg-s-F; cos ~.

STUDENT A: I shall make use of equations (15), (16) and
(18), in which I'll make the following substitutions

+ Eq cos ~ f }g m or g

Eq sin ~ f For -
mg+Eq cos ~ P

After this I obtain the required results at once

T = 200 sin a (144)
2 + Eq cos ~

g m

L = v
2osin2a (1+ EqSin~tana) (145)

2 +Eqcos~ mg+Eqcos~
g m

I (.12 0 sin 2 a
H 2 =2" +Eqcos~ (146)

g m

TEACHER: Absolutely correct. Unfortunately, examinees
are often incapable of drawing an analogy between motion in
a field of gravitation and motion in a uniform electrostatic
field. Consequently, such problems prove to be excessively
difficult for them.

STUDENT A: We did not study such problems before. The
only problem of this kind I have ever encountered concerns the
motion of an electron between the plates of a parallel-plate
capacitor, but we neglected the influence of the gravitational
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Fig. 95

+

field on the electron. I remember that such problems seemed
to be exceedingly difficult.

TEACHER: All these problems are special cases of the prob­
lem illustrated in Fig. 94a, since in the motion of an electron
inside a capacitor the influence of the gravitational field
can be neglected. Let us consider one such problem.

Having an initial velocity Vb an electron flies into a paral­
lel-plate capacitor at an angle of a 1 and leaves the capacitor

at an angle of a 2 to the plates as
shown in Fig. 95. The length of
the capacitor plates is L. Find the
intensity E of the capacitor field
and the kinetic energy of the ele­
ctron as it leaves the capacitor.
The mass m and charge q of the
electron are known.

I denote by V 2 the velocity of
the electron as it flies out of
the capacitor. Along the plates

the electron flies at uniform velocity. This enables us to
determine the time of flight T inside the capacitor

L
T=---

VI cos al

The initial and final components of the electron velocity
perpendicular to the plates are related by the familiar
kinematic relationship for uniformly decelerated motion

. . Eq T . Eq L
V2 sIn a" = VI sIn a 1 - - = VI sIn a l - - ---

401 m m VI cos al

from which, taking into account that the velocity component
along the plates remains unchanged (VI cosa 1 = V 2 cos ( 2) , we
obtain . Eq L

VI cosa 1 tan a 2 = VI sm a 1 - - --­
m VI cos al

From this equation we determine the intensity of the capaci-
tor field 2 2

E (t t )mv 1cos a l (147. = ana1 - an «, qL )

The kinetic energy of the electron as it flies out of the capa­
citor is

Is everything quite clear in this solution?
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T=21P! IE (149)
V g+--i

m

!I
Fig. 96
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STUDENT A: Yes. Now I know how to solve such problems.
TEACHER: Also of interest are problems concerning the vib­

ration of a pendulum with a charged bob located within a pa-
+ t rallel-plate capacitor. We

shall consider the following
problem. A bob of mass m
with a charge q is suspended
from a thin string of length
l inside a parallel-plate
capacitor with its plates
oriented horizontally. The
intensity of - the capacitor
field is E, and the lines of
force are directed downward
(Fig. 96a). Find the period
of vibration of such a pen­
dulum.

STUDENT B: Since in the
given case the lines of force

e: of the electrostatic field and
err of the gravitational field

are in the same direction,
I can use the result of equ­
ation (75) for an ordinary
pendulum after substituting
the sum of the accelerations
(g+Eq/m) for the accelera­
tion of gravity g. Thus the
required period of vibration

~~_~~ will be

TEACHER: Quite correct.
As you see, the posed prob­
lem is very simple if you
are capable of using the
analogy between motion in

a uniform electrostatic field and in a gravitational field.
STUDENT A: Equation (149) resembles equation (77) in its

structure.

(C)
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TEACHER: This is quite true. Only in equation (77) the
addend to the acceleration g was due to the acceleration of the
frame of reference (in which the vibration of the pendulum was
investigated), while in equation (149) the addend is associated
with the presence of a supplementary interaction.

How will equation (149) change if the sign of the charges
on the capacitor plates is reversed?

STUDENT A: In this case the period of vibration will be

T= 2nV lEq
g-fii

TEACHER: Good. What will happen to the pendulum if we
gradually increase the intensity of the capacitor field?

STUDENT A: The period of vibration will increase, approach­
ing infinity at E=mgjq. If E continues -to increase further,
then we will have to fasten the string to the lower and not the
upper plate of the capacitor.

TEACHER: What form will the equation for the period take
in this case?

STUDENT A: This equation will be of the form

T=2n" / E/
V m-g

TEACHER: Good. Now let us complicate the problem to some
extent. We will consider the vibration of a pendulum with a
charged bob inside a capacitor whose plates are oriented, not
horizontally, but vertically (Fig. 96b). In this case, the acce­
lerations g and (Eqjm) are directed at right angles to each
other. As before, find the period of vibrationof the pendulum
and, in addition, the angle ex that the string makeswith the
vertical when the pendulum is in the equilibrium position.

STUDENT B: Taking into consideration the line of reasoning
given in the present section and in § 12, I can conclude at
once that: (1) the period of vibration is expressed in terms
of the effective acceleration g eft' which is the vector sum
of the accelerations of the earth's gravity and of the electro­
static field; and (2) the equilibrium direction of the string
coincides with the vector of the above-mentioned effective
acceleration (this direction is shown in Fig. 96b by a dashed
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line). Thus

(152)

and
!!L

tan ex = .-!!!.- (153)g

TEACHER: Absolutely correct. I think that now it will be
easy to investigate the general case in which the capacitor
plates make an angle of pwith the horizontal (Fig. 96c). The
same problem is posed: find the period of vibration of the pen­
dulum and the angle ex between the equilibrium direction of
the pendulum string and thevertical.

STUDENT B: As in the precedingcase, the effective accelera­
tion is the vector sum of the acceleration of the earth's gravity
and that of the electrostatic field. The direction of this effe­
ctive acceleration is the. equilibrium direction of the pendu­
lum string. The effective acceleration g eft can be found by
using the law of cosines from trigonometry. Thus

g;ff = g2 +( e,: r+2g ~ cosp
Then

T=2n r 1 (154)J! }Ig2+ (e,: r+2g~ cos f

The value of tan a can be found as follows
Eq . A

geff x m sin t-'

tana= --= E (155)
g eft Y g+ -!Leos B

m

TEACHER: Your answers are correct. Obviously, at ~==O,

they should lead to the results for the case of horizontal pla­
tes, and at ~=90° to those for vertical plates. Please check
whether this is so.

STUDENT B: If ~==O, then cos ~= 1 and sin ~=O. In this
case, equation (154) reduces to equation (149) and tan a=O
(the equilibrium position of the string is vertical). If ~=90°,

then cos ~=O and sin ~=1. In this case, equation (154) be-
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comes equation (152), and equation (155) reduces to equation
(153).

TEACHER: I think that we have completely cleared up the
problem of the vibration of a pendulum with a charged bob
inside a parallel-plate capacitor.

In conclusion, I want you to calculate the period of vibra­
tion of a pendulum with a charged bob given that at the point

I where the string of the pendulum is attached
~ there is another charge of exactly the same

+fl magnitude and sign (Fig. 97). There are no
: capacitors whatsoever.
I STUDENT A: According to Coulomb's law,
: the bob will be repulsed from the point of
I suspension of the string with a force of q2/l2.

__ I This force should impart an acceleration of
-1 +9 q2/(l2m) to the bob. The acceleration must

Fig. 97 be taken into account in the equation for
finding the period of vibration. As a result

we obtain the following expression

T=2n .. /--l q-2­

V g+ 12m

TEACHER (to Student B): Do you agree with this result?
STUDENT B: No, I don't. For equation (156) to be valid, it

is necessary for the acceleration q2/(l2m) to be directed ver­
tically downward at all times. Actually, it is so directed
only when the pendulum passes the equilibrium position. Thus
it is clear that equation (156) is wrong in any case. However,
I don't think that I can give the right answer.

TEACHER: That you understand the error in equation (156)
is a good sign in itself. In the given case, the electric force
is at all times. directed along the string and is therefore al­
ways counterbalanced by the reaction of the string. It follows
that the electric force does not lead to the development of a
restoring force and, consequently, cannot influence the period
of vibration of the pendulum.

STUDENT B: Does that mean that in the given case the' pe­
riod of vibration of the pendulum will be found by equation
(75) for a pendulum with an uncharged bob?

TEACHER: Exactly. In the case we are considering, the field
of electric forces is in no way uniform and no analogy can be
drawn with a gravitational field.
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PROBLEMS

+?

T
Fig. 98

45. An electron flies into a parallel-plate capacitor in a direction paral­
lel to the plates and at a distance of 4 cm from the positively charged plate
which is 15 ern long. How much time will elapse before the electron falls
on this plate if the intensity of the capacitor field equals 500 V1m (volts
per metre)? At what minimum velocity can the electron fly into the ca­
pacitor so that it does not fall on the plate? The mass of the electron is

I 9X 10-28 g, its charge is 4.8X 10- 10 esu (elect-
A + rostatic units).

---- ---- 46. An electron flies into a parallel-plate
capacitor parallel to its plates at a velocity of
3X 106 m/sec, Find the intensity of the field in
the capacitor if the electron flies out of it at an
angle of 30° to the plates. The plates are 20 ern
long. The mass and charge of the electron are
known (see problem No' 45).

47. Inside a parallel-plate capacitor with a
field intensity E, a bob with a mass m and
charge +q, suspended from a string of length 1,
rotates with uniform motion in a circle (Fig. 98).
The angle of inclination of the string is Cl.. Find

the tension of the string and the kinetic energy of the bob.
48. Two balls of masses ml and m2 and with charges +ql and +q2

are connected by a string which passes over a fixed pulley. Calculate the
acceleration of the balls and the tension in the string if the whole system
is located in a uniform electrostatic field of intensity E whose lines of force
are directed vertically downward. Neglect any interaction between the
charged balls.

49. A ball of mass m with a charge of +q can rotate in a vertical plane
at the end of a string of length 1 in a uniform electrostatic field whose
lines of force are directed vertically upward. What horizontal velocity
must be imparted to the ball in its upper position so that the tension of
the string in the lower position of the ball is 10 times the weight of the
ball?
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TEACHER: Let us discuss Cou..
lomb's law in more detail, as
well as problems that are asso..
ciated with the application of
this law. First of all, please state
Coulomb's law.

STUDENT A: The force of in­
teraction between two charges is
proportional to the product of
the charges and inversely pro­
portional to the square of the dis­
tance between them.

TEACHER: Your statement of
this law is incomplete; you have
left out some points.

STUDENT B: Perhaps I should
add that the force of interaction

to the dielectric constant Ke of the

§ 26.

CAN YOU APPLY

COULOMB'S LAW?

F - B qtq2
- Ker2

yields no information on the direction of the force.

is inversely proportional
medium. Is that it?

TEACHER: It wouldn't be bad to mention it, of course. But
that is not the main omission. You have forgotten again that
a force is a vector quantity. Consequently, in speaking of the
magnitude of a force, don't forget to mention its direction
(in this connection, remember our discussion of Newton's
second law in § 4).

STUDENT A: Now I ·understand. You mean we must add that
the force with which the charges interact is directed along the
line connecting the charges?

TEACHER: That is insufficient. There are two directions
along a line.

STUDENT A: Then we must say that the charges repulse each
other if they are of the same sign and attract each other if
they are of opposite signs.

TEACHER: Good. Now, if you collect all these additions,
you will obtain a complete statement of Coulomb's law. It
would do no harm to emphasize that this law refers to inte­
raction between point charges.

STUDENT B: Can the equation of Coulomb's law be written
so that it contains full information concerning the law? The
ordinary form
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Fig. 99

TEACHER: Coulomb's law can be written in this way. For
this we first have to find out what force we are referring to.
Assume that we mean the force with which charge ql acts on
charge q2 (and not the other way round). We introduce coor­
dinate axes with the origin at charge qt. Then we draw vector
; from the origin to the point where charge q2 is located (Fig.
99). This vector is called the radius vector of charge q2. In

this case, the complete formula of Cou­
lomb's law will be

F= B qtq2 ; (158)«»
where factor B depends upon the sele­
ction of the system of units.

9 . STUDJ=:NT A: But in this equation the.
force is inversely proportional, not to the
square, but to the cube of the disfance
between the chargesl

TEACHER: Not at all. Vector 7'/r is numerically equal to
unity (dimensionless unity I). It is called a unit vector. It
serves only to indicate direction.

STUDENT A: Do you mean that I can just write equation
(158) if I am asked about Coulomb's law? Nothing else?

TEACHER: You will only have to explain the notation in
the equation.

STUDENT A: And what if I write equation (157) instead of
(158) ?

TEACHER: Then you will have to indicate verbally the di­
rection of the Coulomb force.

STUDENT A: How does equation (158) show that the charges
attract or repulse each other?

TEACHER: If the charges are of the same sign, then the
product qlq 2 is positive. In this case vector F is parallel
to vector;' Vect.or F is the force applied to charge q2; charge
q2 is repulsed by charge ql. If the charges are of opposite sign,
the product qlq2 is negative and then vector F will be anti-

~

parallel to vector r i. e. charge q2 will be attracted by charge q1.

STUDENT A: Please explain what we should know about
factor B.

TEACHER: This factor depends upon the choice of a system of
units. If you use the absolute electrostatic (cgse) system of
units, then 8=1; if you use the International System of Units
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Fig. 100
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(51), then B=I/(411:8 0) , where the constant 8 0 = 8.85x 10-12

couI 2/N-m
2 (coulomb 2 per newton-m 2).

Let us solve a few problems on Coulomb's law.
Problem 1. Four identical charges q are located at the

corners of a square. What charge Q of opposite sign must be
placed at the centre of the square so that the whole system of
charges is in equilibrium?

STUDENT A: Of the system of fivecharges, four are known and
one is unknown. Since the system is in equilibrium, the sum of
the forces applied to each of the five charges equals zero. In

other words, we must deal with the
equilibrium of each of the five charges.

TEACHER: That will be superfluous.
You can readily see that charge Q is in
equilibrium, regardless of its magni­
tude, due to its geometric position.
Therefore, the condition of equilibrium
with respect to this charge contributes
nothing to the solution. Owing to the
symmetry of the square, the remaining
four charges q are completely equiva­
lent. Consequently, it is sufficient to

consider the equilibrium of only one of these charges, no mat­
ter which. We can select, for example, the charge at point
A (Fig. 100). What forces act on this charge?

STUDENT A: Force F 1 from the charge at point B, force F 2

from the charge at point D and, finally, the force from the
sought-for charge at the centre of the square.

TEACHER: I beg your pardon, but why-didn't you take the
charge at point C into account?

STUDENT A: But it is obstructed by the charge at the centre
of the square.

TEACHER: This is a naive error. Remember: in a system of
charges each charge is subject to forces exerted by all the
other charges of the system without exception. Thus, you will
have to add force F 3 acting on the charge at point A from the
charge at point C. The final diagram of forces is shown in
Fig. 100.

STUDENT A: Now, everything is clear. I choose the direction
AB and project all the forces applied to the charge at poin! A
on this direction. The algebraic sum of all the force projec­
tions should equal zero, i. e.

F 4 = 2F 1 cos 45°+F 3
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Denoting the side of the square by a, we can rewrite this
equation in the form

Qq V- q2 q2-- 2- -a2 - a2 + 2a2

2
from which

Q = ~ (2V2+ 1) (159)

TEACHER: Quite correct. Will the equilibrium of this sys­
tem of charges be stable?

STUDENT B: No, it won't. This is unstable equilibrium.
Should anyone of the charges shift slightly, all the charges

will begin moving and the
CQ) , (b) I system will break up.

TEACHER: You are right.
It is quite impossible to
devise a stable equilibrium
configuration of stationary
charges.

Problem 2. Two spherical
bobs of the same mass and
radius, having equal charges
and suspended from strings
of the same length attached
to the same point, are sub-

P-Ff, merged in a liquid dielect­
ric of permittivity K, and
density Po. What should the
density p of the bob material
be for theangle of divergence

Fig. 101 of thestrings tobethesame in
the air and in thedielectric?

STUDENT B: The divergenceof the strings is due to Coulomb
repulsion of the bobs. Let Fel denote Coulomb repulsion in the
air and Fe2' in the liquid dielectric.

TEACHER: In what way do these forces differ?
STUDENT B: Since, according to the conditions of the prob­

lem, the angle of divergence of the strings is the same in both
cases, the distances between the bobs are also the same. There­
fore, the difference in the forces F el and Fe2 is due only to
the dielectric permittivity. Thus

Fe l = KeFe l (160)
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Fig. 102

Let us consider the case where the bobs are in the air. From
the equilibrium of the bobs we conclude that the vector sum of
the forces Fel and the weight should be directed along the
string because otherwise it cannot be counterbalanced by the
reaction of the string (Fig. lOla). It follows that

F
~1 = tan ex

where ex is the angle between the string and the vertical.
When the bobs are submerged in the dielectric, force Fel should
be replaced by force Fe 2 , and the weight p. by the difference
(P-Fb) , where Fb is the buoyant force. However, the ratio

of these new forces should, as before, be
equal to tan ex (Fig. 10Ib). Thus

Fe2 = tan ex
P-Fb

Using the last two equations, we obtain
r: Fe2

p= P-Fb

After substituting equation (160) and
taking into consideration that P=Vgp
and Fb=Vgpo, we obtain

«, 1-=--
P P-Po

and the required density of the bob material is
PoKe

p= Ke-I

TEACHER: Your answer is correct.
Problem 3. Two identically charged spherical bobs of mass m

are suspended on strings of length 1 each and attached to the
same point. A t the point of suspension there is a third ball
of the same charge (Fig. 102). Calculate the charge q of the
bobs and ball if the anglebetween the strings in the equilibrium
posi tion is equal to cx.

STUDENT B: We shall consider bob A. Four forces (Fig. 102)
are applied to it. Since the bob is in equilibrium, I shall
resolve these forces into components in two directions ....

TEACHER (interrupting): In the given case, there is a
simpler solution. The force due to the charge at the point of
suspension has no influence whatsoever on the equilibrium
position of the string: force F e2 acts along the string and is
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counterbalanced in any position by the reaction of the string.
Therefore, the given problem can be dealt with as if there were
no charge at all at the point of suspension of the string. As

.a rule, examinees don't understand this.
STUDENT B: Then we shall disregard force Fe2' Since the

vector sum of the forces Fel and P must be directed along the
string, we obtain

l/ = tan ~ (162)

TEACHER: Note that this result does not depend upon the
presence or absence of a charge at the p@int of suspension.

STUDENT B:. Since
q2

Fel=-.-~-
412 sin" ~

2

we obtain from equation (162):
q2 cx,

------- = tan -
412 mg sin2 ~ 2

Solving for the required charge, we obtain

q= 21 sin ~ Vmg tan ~ (163)

TEACHER: Your answer is correct.
STUDENT A: When will the presence of a charge at the point

of suspension be of significance?
TEACHER: For instance, when it is required to find the

tension of the string.

PROBLEMS
50. Identical charges +q are located at the ver­

tices of a regular hexagon. What charge must be
placed at the centre of the hexagon to set the whole
system of charges at equilibrium?

51. A spherical bob of mass m and charge q sus­
pended from a string of length 1 rotates about a
fixed charge identical to that of the bob (Fig. 103).
The angle between the string and the vertical is a,
Find the angular velocity of uniform rotation of the
bob and the tension of the string.

52. A spherical bob of mass m with the charge q'/91-- -..... 'I can rotate in a vertical plane at the end of a string
' .... - _ _ .:« of length 1. At the centre of rotation there is a second

ball with a charge identical in sign and magnitude to
that of the rotating bob. \Vhat minimum horizontal
velocity must be imparted to the bob in its lower

Fig. 103 position to enable it to make a full revolution?



Electric currents have become an integral part of our every­
day life, and so there is no need to point out the importance
of the Ohm .and the Joule-Lenz laws. But how well do you
know these laws?
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§ 27.

DO YOU KNOW

OHM'S LAW?

TEACHER: Do you know Ohm's
law?

STUDENT A: Yes, of course.
I think everybody knows Ohm's
law. That is probably the simplest
question in the whole physics
course.

TEACHER: We shall see. A
portion of an electric circuit is
shown in Fig. l04a. Here cfJ is
the electromotive force (emf)
and it is directed to the right;
R 1 and R 2 are resistors; r is the
internal resistance of the seat of
electromotive force; and CPA and
cP B are the potentials at the ends
of the given portion of the cir-

cuit. The current flows from left to right. Find the value I of
this current.

STUDENT A: But you have an open circuit!
TEACHER: I proposed" that you consider a portion of some

large circuit. You know nothing about the rest of the circuit.
a Nor do you need to, since

( ) s the potentials at the ends
A R, _.......~ of this portion are given.
sPA~~f8 STUDENT A: Previously,

I~ we only dealt with closed
(6) 1 6 ~~ electric circuits. For "them.
~ 8 lJ Ohm's law can be written

(C)~ Rz B in the form

fA~~SOB 1-1- (164)
I~ - R+r

Fig. 104 TEACHER: You are mista-
ken. You also considered

elements of circuits. According to Ohm's law, the current in
an element of a circuit is equal to the ratio of the voltage
to the resistance.

STUDENT A: But is this a circuit element?
TEACHER: Certainly. One such element is illustrated in

Fig. I04b. For this element you can write Ohm's law in the
form <PA-<PR

J= R
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Fig. 105

A

Instead of the potential difference (CPA-CPB) between the ends
of the element, you previously employed the simpler term
"voltage", denoting it by the letter V.

STUDENT A: In any case, we did not deal with an element of
a circuit of the form shown in Fig. l04a.
(a) TEACHER: Thus, we find that

fjJ you know Ohm's law for the
. special cases of a closed circuit

and for the simplest kind of ele­
ment which includes no emf. You
do not, however, know Ohm's
law for the general case. Let us
look into this together.

Figure l05a shows the change
in potential along a given portion
of a circuit. The current flows
from left to right and therefore
the potential drops from A to C.
The drop in potential across the
resistor R1 is equal to I R1. Furth­
er, we assume that the plates of
a galvanic cell are located at C
and D. At these points upward
potential jumps occur; the sum
of the jumps is the emf equal
to lJ. Between C and D the po­
tential drops across the internal
resistance of the cell; the drop
equals I r. Finally, the drop in
potential across the resistor R 2

equals I R 2. The sum of the drops
across all the resistances of the
portion minus the upward poten­
tial jump is equal to V. It is the

potential difference betweenthe ends of the portion being con­
sidered. Thus

From this we obtain the expression for the current, i. e. Ohm's
law for the given portion of the circuit

1= C-t-(q>A-CPR) (166)
R1+R2+r
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Note that from this last equation we can readily obtain the
special cases familiar to you. For the simplest element contain­
ing no emf we substitute <8=0 and r=O into equation (166).
Then

1= CPA-CPR
R1+R2

which corresponds to equation (165). To obtain a closed cir­
cuit, we must connect the ends A and B of our portion. This
means that CPA =CPB. Then

1= <8
R1 +R2 +r

This corresponds to equation (164).
STUDENT A: I see now that I really didn't know Ohm's law,
TEACHER: To be more exact, you knew it for special cases

only. Assume that a voltmeter is connected to the terminals
of the cell in the portion of the circuit shown in Fig. 104a.
Assume also that the voltmeter has a sufficiently high resist­
ance so that we can disregard. the distortions due to its int­
roduction into the circuit. What will the voltmeter indicate?

STUDENT A: I know that a voltmeter connected to the ter­
minals of a cell should indicate the voltage drop across the
external circuit. In the given case, however, we know nothing
about the external circuit.

TEACHER: A knowledge of the external circuit is not neces­
sary for our purpose. If the voltmeter is connected to points C
andD, it will indicate the difference in potential between
these points. You understand this, don't you?

STU-DENT A: Yes, of course.
TEACHER: Now look at Fig. l05a. It is evident that the

difference in potential between points C and D equals (<8-1 r).
Denoting the voltmeter reading by V, we obtain the formula

V=~-Ir (167)

I would advise you to use this very formula since it requi­
res no knowledge of any external resistances. This is espe­
cially valuable in cases when you deal with a more or less
complicated circuit. Note that equation (167) lies at the
basis of a well-known rule: if the circuit is broken and no
current flows (I ==0), then V=<8. Here the voltmeter reading
coincides with the value of the emf.
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Do you understand all this?
STUDENT A: Yes, now it is clear to me.
TEACHER: As a check I shall ask you a question which

examinees quite frequently find difficult to answer. A closed
circuit consists of n cellsconnected in series. Each element hasan
emf cfj and internal resistance r. The resistance of theconnecting
wires is assumed to be zero. What will be the reading of a colt­
meter connected to the terminals of one of the cells? As usual,
it is assumed that no current flows through the voltmeter.

STUDENT A: I shall reason as in the preceding explanation.
The voltmeter reading will be V=cfj-lr. From Ohm's law for
the given circuit we can find the current I = (ncfj)/ (nr)=cf}/r.
Substituting this in the first equation we obtain V=cf}­
- (cf}/r)r=O. Thus, in this case, the voltmeter will read zero.

TEACHER: Absolutely correct. Only please remember that
this case was idealized. On the one hand, we neglected the
resistance of the connecting wires, and on the other, we assu­
med the resistance of the voltmeter to be infinitely large, so
don't try to check this result by experiment.

Now let us consider a case when the current in a portion of
a circuit flows in one direction and the emf acts in the opposite
direction. This is illustrated in Fig. l04c. Draw a diagram
showing the change in potential along this portion.

STUDENT A: Is it possible for the current to flow against
the emf?

TEACHER: You forget that we have here only a portion of a
circuit. The circuit may contain other emf's outside the por­
tion being considered, under' whose effect the current in this
portion may flow against the given emf.

STUDENT A: I see. Since the current flows from left to
right, there is a potential drop equal to IR1 from A to C. Since
the emf is now in the opposite direction, the potential jumps
at points C and D should now reduce the potential instead of
increasing it. From point C to point D the potential should
drop by the amount I r, and from point D to point B, by IR 2.

As a result we obtain the diagram of Fig. l05b.
TEACHER: And what form will Ohm's law take in this case?
STUDENT A: It will be of the form

1= (CPA-CPB)-cC (168)
R1+R2+r

TEACHER: Correct. And what will the voltmeter indicate
now?
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STUDENT A: It can be seen from Fig. 10Sb that in this case

V=IJ+lr (169)

TEACHER: Exactly, Now consider the following problem.
In the electrical circuit illustrated in Fig. 106, r=1 ohm, R=

=10 ohms and the resistance of the voltmeter
~ Rv= 200 ohms. Compute the relative error of
r the voltmeter reading obtained assuming that

the voltmeter has an infinitely high resistance
R and consequently causes no distortion in the

circuit.
We shall denote the reading of the real

voltmeter by V and that. of the voltmeter
with infinite resistance by VaD • Then the rela-

Fig. 106 tive error will be

f= v~:v = 1-:", (170)

Further, we shall take into consideration that

Voo=R~,R (171)

and

(172)RR v
R+Rv

v= <C
r+ RR v

R+Rv

After substituting equations (171) and (172) into (170) we
obtain

f = 1- Rv(R+r) = 1- Rv (R+r)
(R+R v)r+RR v (r+R) Rv+rR -

1
= 1- rR

1+ (r+R) Rv

Since Rv~R and R>r, the fraction in the denominator of
the last equation is much less than unity. Therefore, we can
make use of an approximation formula which is always useful
to bear in mind

(173)

This formula holds true at A~l for any value of ex (whole
or fractional, positive or negative). Employing approximation
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formula (173) with a=-l and f..=rR (r+R)-lR;I, we
obtain

f rR
~ (r+R) Rv (174)

Fig. 107

Substituting the given numerical values into equation
(174), we find that the error is f~I/220=O.OO45.

STUDENT A: Does this mean that the higher the resistance of
the voltmeter in comparison with the external resistance, the
ta) lower the relative error, and that

the more reason we have to neg­
Al~--""'I----"B, lect the distortion of the circuit

when the voltmeter is connected
into it?

TEACHER: Yes, that's so. Only
.........-~B2 keep in mind that R~Rv is a

sufficient, but· not a necessary
condition for the smallness of the
error f. It is evident from equa­
tion (174) that error f is small
when the condition r~R v is
complied with, i.e, the resistance
of the voltmeter is much higher
than the internal resistance of

1-----eB the current source. The external
resistance in this case may be
infinitely high.

Try to solve the following
problem: In the electrical circuit

shown in Fig. I07a, <8=6 V, r=2/3 ohm and R=2 ohms.
· Compute the voltmeter reading.

STUDENT A: Can we assume that the resistance of the volt­
meter is infinitely high?

TEACHER: Yes, and the more so because this resistance is
not specified in the problem.

STUDENT A: But then, will the current flow through the
resistors in the middle of the circuit? It will probably flow
directly along the elements A IA 2 and BIB 2.

TEACHER: You are mistaken. Before dealing with the cur­
rents, I would advise you to simplify the diagram somewhat.
Since elements A IA 2 and B IB 2 have no resistance, it follows
that CPAI==CPA2 and CPBI==CPB2. Next, we can make use of the
rule: if in a circuit any two points have the same potential,
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we can bring them together without changing the currents
through the resistors. Let us apply this rule to our case by
making point A i coincidewith point A 2, and point B 1 with B 2'

We then obtain the diagram shown in Fig. I07b. This one is
quite easy to handle. Therefore, I'll give you the final answer
directly: the voltmeter reading will be 4 V. I shall leave the
necessary calculations to you as a home assignment.

PROBLEMS
53. An ammeter, connected into a branch of the circuit shown in

Fig. 108, has a reading of 0.5 A. Find the current through resistor R4

if the resistances are: R1= 2 ohms, R2= 4 ohms, Rs= 1 ohm, R4= 2 ohms
and R6= 1 ohm. •

Fig. 108 Fig. 109

.54. In the electric circuit shown in Fig. 109, $=4 V, r= 1 ohm" and
R= 2 ohms. Find the reading of the ammeter. •

55. The resistance of a galvanometer equals 0.2 ohm. Connected in
parallel to the galvanometer is a shunt with a resistance of 0.05 ohm.
What resistance should be connected in series with this combination to
make the total resistance equal to that of the galvanometer?

56. A voltmeter with a resistance of 100 ohms is connected to the ter­
minals of a cell with an emf of 10 V and internal resistance of 1 ohm.'
Determine the reading of the voltmeter and compute the relative error
of its reading assuming that its resistance is infinitely high.

57. An ammeter with a resistance of I ohm is connected into a circuit
with an external resistance of 49 ohms and with a current source having
an emf of 10 V and an internal resistance of 1 ohm. Determine the reading
of the ammeter and compute the relative error of its reading assuming
that it has no resistance.



§ 28.

CAN A CAPACITOR'

BE CONNECTED INTO

A DIRECT-CURRENT

CIRCUIT?

TEACHER: Let us consider the
following problem. In the cir­
cuit shown in Fig. 110, C is the
capacitance of the capacitor. Find
the charge Q on the capacitor
plates if the emf of the current
source equals IJ and its internal
resistance is r.

STUDENT A: But can we use
a capacitor in a direct-current
circuit? Anyway, no current will
flow through it.

TEACHER: What if it doesn't?
But it will flow in the parallel
branches.

STUDENT A: I think I under-
stand now. Since current doesn't

flow through the capacitor in the circuit of Fig. 110, it will
not flow through resistor R 1 either. In the external part of
the circuit, current will flow only through resistor R 2. We can
find the current from the relationship 1=1J/(R 2+ r) and then
the potential difference between points A and B will equal
the drop in voltage across resistor R 2, i.e.

{jJB-{jJA = I R2 = R~~r (175)

I don't know what to do next.' To find the charge on the
capacitor plates, I must first find the potential difference
between points A and F.

r
C R,

A B

Fig. 110

+ -
t; r

Fig. III

TEACHER: You were correct in concluding that no current
flows through resistor R 1. In such a case, however, all points
of the resistor should have the same potential (remember the
discussion in § 24). That means that q>F =CPB. From this,
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making use of equation (175); we find the required charge

Q= Cc8R2 (176)
R2 +r

Now consider the following problem. In the electric circuit
shown in Fig. Ill, c8=4 V, r=l ohm, Rl=3 ohms, R 2==2
ohms, C1=2 microF (microfarads),C 2=8 microF, C3==4
microF and C.=6 microF. Find the charge on the plates of
each capacitor.

In this connection, recall the rules for adding the capacit­
ances of capacitors connected in series and in parallel.

STUDENT A: I remember those rules. When capacitors are
connected in parallel, their combined capacitance is simply the
sum of the individual capacitances, i.e:

C= C, +C2+C3 + ... (177)
and when they are connected in series, the combined capaci­
tance is given by the reciprocal of the sum of the reciprocals
of the individual capacitances. Thus

I 1 I 1
-e=c] +C

2
+C

3
+... (178)

TEACHER: Exactly. Now, making use of rule (177), we find
the capacitance between points A and B:

CAB = 2 microF +8 microF = 10 microF
and between points F and D as well:

CFn = 4 rnicrof'<l-f microF= 10 microF
The difference in potential between points A and D is equal

to the voltage drop across resistor R t- Thus

Cj)D-Cj)A=IR1= l~"=3V
Obviously, resistor R 2 plays no part in the circuit and can

be ignored.
Since CAB=C FD , then

3V
<PB-<PA=<Pn-<PF=-2-= 1.5 V

Finally, we can obtain the required charges;
Ql = C1 (<PB-<PA)== 3 microC (microcoloumbs)
Q2 = C2 (<PB- <PA)= 12 microC
Q3=C3 (<Pn - <PF) == 6 microC
Q.= C4 (<PD-<PF) = 9 microC

204



~ ,.
Fig. 112

R,J

~c

PROBLEMS

58. In the circuit (Fig. 112), c8=5 V, r= 1 ohm, R2= 4 ohms, R1= 3
ohms and C=3 microF. Find the charge on the plates of each capacitor.

59. All the quantities indicated on the diagram of the circuit shown
in Fig. 113 being known, find the charge on the plates of each capacitor.

60. A parallel-plate capacitor with plates
of length 1 is included in a circuit as shown ~
in Fig. 114. Given are the emf If of the cur- ~
rent source, its internal resistance r and the C Re C
distance d between the plates. An electron with
a velocity Vo flies into the capacitor, parallel
to the plates. What resistance R should be
connected in parallel with the capacitor so
that the electron flies out of the capacitor at
an angle a to the plates? Assume the mass m
and the charge q of the electron to be known.

61. Two identical and mutually perpen­
dicular parallel-plate capacitors, with plates
of length 1 and a distance d between the plates are included in the circuit
shown in Fig. 115. The emf cf} and the resistance r of the current source
are known. Find the resistance R at which an electron flying at a velo-

Fig. 113 Fig. 114

city of Vo into one of the capacitors, parallel to its plates,· flies into the
second capacitor and then flies out parallel to its plates. The mass m and
charge q of the electron are known.

t r
Fig. 115 Fig. 116

62. A parallel-plate capacitor with plates of length 1 and a distance d
between them is included in the circuit shown in Fig. 116 (the emf cC and
the resistances Rand r are known). An electron flies into the capacitor at
a velocity Vo parallel to the plates. At what angle to the plates will the
electron fly out of the capacitor if m and q are known.



Fig. 117
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§ 29.

CAN YOU COMPUTE

THE RESISTANCE

OF A BRANCHED

PORTION OF A CIRCUIT?

TEACHER: Compute the resis­
tance of the portion of a circuit
shown in Fig. 117a. You can neg­
lect the resistance of the wires
(leads) .

STUDENT A: If the resistance
of the wire can be neglected then
the leads can be completely dis­
regarded. The required resistance
equals 3R.

TEACHER: You answered with­
out thinking, To neglect the
resistance of the wire and to
neglect the leads are entirely
different things (though many
examinees suppose them to be
the same). To throw a lead out of

a circuit means to replace it with an infinitely high resistance.
Here, on the contrary, the resistance of the leads equals zero.

STUDENT A: Yes, of course,
+-~-~ I simply didn't give it any

I thought. But now I shall rea­
son in the following manner.

(b) ~ At point A the current will
be divided into two currents

8 whose directions I have shown
in Fig. 117b by arrows. Here
the middle resistor can be com­
pletely disregarded and the
total resistance is R/2.

TEACHER: Wrong again! I
advise you to use the following
rule: find points in the circuit
with the same potential and
then change the diagram so that
these points coincide with one
another. The currents in the
various branches of the circuit
will remain unchanged, but the
diagram may be substantially
simplified. I have already spo-

ken about this in § 27. Since in the given problem the resi­
stances of the leads equal zero, points A and A 1 have the
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same potential. Similarly, points Band B 1 have the same
potential. In accordance with the rule I mentioned, we shall
change the diagram so that points with the same potential
will finally coincide with one another. For this purpose, we
shall gradually shorten the lengths of the leads. The conse­
cutive stages of this operation are illustrated in Fig. 117c.
As a result we find that the given connection corresponds to
an arrangement with three resistors connected in parallel.
Hence, the total resistance of the portion is R/3.

(a)

B

A

R/2

R/2

o

Fig. 118 Fig. 119

STUDENT A: Yes, indeed. It is quite evident from Fig. 117e
that the resistors are connected in parallel.

TEACHER: Let us consider the following example. We have a
cube made up of leads, each having a resistance R (Fig." liSa).
The cube is connected into a circuit as shown in the diagram.
Compute the total resistance of the cube.

We can start by applying the rule I mentioned above. Indi­
cate the points having the same potential.

STUDENT A: I think that the three points A, A 1 and A 2 will
have the same potential (see Fig. liSa) since the three edges
of the cube (DA, DA 1 and DA 2) are equivalent in all respects.

TEACHER: Yes, and so are edges BC, BC 1 and BC 2. There­
fore, points C, C1 and C2 will have the same potential. Next,
let us tear apart our wire cube at the indicated points and, af-
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R,

B

A

Fig. 120

B

ter bending the edge wires, connect them together' again so
that points with the same potential coincide with one another.
What wi11 the diagram look -like now?

STUDENT A: We shall obtain the diagram shownin Fig. 118b.
TEACHER: Exactly. The diagram obtained in Fig. 118b is

equivalent to the initial diagram (with the cube) but is appre-
ta) ciably simpler. Now you should

H, have no difficulty in computing
the required total resistance.

STUDENT A: It equals
(lj3)R + (lj6)R + (lj3)R =
= (5j6)R.

STUDENT B: How would you
iind the total resistance of a
wire ~gure in the form of a
square with diagonals, conne­
cted into a circuit as shown in
Fig. 119a?

TEACHER: Again we must
search for points with the same
potential. In the given case we
readily see that the diagram
has an axis of symmetry which

I shall indicate in Fig. II.9aas a dashed line. It is clear that
all points lying on the axis of symmetry should have the same
potential which is equal to one half the sum of the potentials
of points A and D. Thus the potentials of points 0, 0 1 and O2

are equal to one another. According to the rule, we can make
these three points coincide with one another. As a result, the
combination of resistances is broken down into two identical
portions connected in series.One of these is shownin Fig. 11gb.
It is not difficult to compute the resistance of this portion. If
each of the wires, or leads, in the square has the same resis­
tance R, then the total resistance of the portion is (4jI5)R.
Thus the required total resistance of the square equals (8jI5)R.

STUDENT A: Do you mean to say that the main rule is to
find points on the diagram with the same potential and to
simplify the diagram by making these points coincide?

TEACHER: Exactly. In conclusion, I wish to propose an
example with an infinite portion. We are given a circuit made
up of an infini te number of repeated sections with the resistors
R1 and R 2 (Fig. 120a). Find the total resistance-between points
A and B.
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(C)

STUDENT A: Maybe we should make use of the method of
mathematical induction? First we will consider one section,
then two sections, then three, and so on. Finally we shall try
to extend the result to n sections for the case when n-+oo.

TEACHER: No', we don't need the
method of mathematical induction here. fa)
We can begin with the fact that infinity
will not change if we remove one ele­
ment from it. We shall cut the first
section away from the diagram (along R
the dashed line shown in Fig. 120a).
Evidently, an infinite number of sec­
tions will still remain and so the
resistance between points C and D
should be equ-al to the required total
resistance R. Thus the initial diagram
can be changed to the one shown in
Fig. 120b. The portion of the circuit (b)

shown in Fig. 120b has a total resis­
tance of Ri+RR 2/(R+R 2). Since this
portion is equivalent to the initial
portion of the circuit, its resistance
should equal the required resistance R.
Thus we obtain

R= Rt + RR2

R+R t

Fig. 121 Fig. 122

i.e. a quadratic equation with respect to R:
R2_RRt-R1R2 = 0

Solving this equation we obtain

R= ~l ( I + VI +4 ~: ) (179)
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STUDENT A: Well, that certainly is an interesting method
of solving the problem.

PROBLEMS
63. In the electrical circuit shown in Fig. 121, ~=4 V, r= 1 ohm and

R=45 ohms. Determine the readings of the voltmeter and ammeter.
64. Find the total resistance of the square shown in Fig. 119aassuming

that it is connected into the circuit at points A and C.
65. A regular hexagon with diagonals is made of wire. The resistance

of each lead is equal to R. The hexagon is connected into the circuit as
shown in Fig. 122a. Find the total resistance of the hexagon.

66. Find the total resistance of the hexagon of Problem 65 assuming
that it is connected into the circuit as shown in Fig. 122b.

67. Compute the total resistance of the hexagongiven in Problem 65
assuming that it is connected into the circuit as shown in Fig. 122c.



(180)
(18t)

(182)

I know the following formulas:

p= (CPl -CP2) I
P=/2R

p _ (CPl -fP2)2
- R

where P is the power developed in the resistance R, (cp l-CP 2)
is the potential difference across the resistance R and I is
the current flowing through the resistance R. .

STUDENT A: We usually used only Iorrnula (181), which
expresses the power in terms of the square of the current and
the resistance.

TEACHER: It is quite evident that the three formulas are
equivalent since one can be transformed into the others by
applying Ohm's law. It is precisely the equivalence of the for­
mulas that indicates that in solving our problem we should
not deal with the current or voltage separately. We should
take all three quantities-the current, voltage and resistan-

STUDENT A: Why does an elect­
§ 30. ric bulb burn out? From excessive
WHY DID THE ELECTRIC voltage or from excessive cur-
BULB BURN OUT? rent?

TEACHER: How would you an-
swer this question?

STUDENT A: I think it is due
to the high current.

TEACHER: I don't "much like
your answer. Let me note, first,
that the question, as you put it,
should be classified in the cate­
gory of provocative or tricky
questions. An electric bulb burns
out as a result of the evolution
of an excessively large amount
of heat in unit time, i. e. from

a sharp increase in the heating effect of the current. This, in
turn, may be due to a change in any of various factors: the
voltage applied to the bulb, the current through the bulb and
the resistance of the bulb. In this connection, let us recall all
the formulas you know for finding the power developed or
expended when an electric current passes through a certain
resistance R.

STUDENT B:
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ce-into account together. (To Student A): By the way, why
do you prefer formula (181)?

STUDENT A: As a rule, the voltage supplied to a bulb is
constant. Therefore, the dependence of the power on the vol­
tage is of no particular interest. Formula (181) is the most
useful of the three.

TEACHER: You are wrong in assigning a privileged position
to formula (181). Consider the following problem. The burner
of an electric table stove is made up of three sections of equal
(a) resistance. If the three sections
-c=:r-c:::J--C: are connected in parallel, water

b in a teakettle begins to boil in 6
()~ minutes. When will the same mass
~_. of water in the teakettle begin to
(C)~ boil if the sections are connected

as shown in Fig. 123?
STUDENT A: First of all we find

Fig. 123 the. total resistance of the burner
for each kind ofconnection, deno­

ting the resistance of one section by R. In the initial case
(connection in parallel), the total resistance R 0=R/3. For
casesa, band c (see Fig. 123) we obtain

Ra = 3R
R 3

Rb = R'+"2='j R (183)
2R2 2

RC=3R=3 R

Next, if we denote the voltage applied to the electric table
stove by U, then, using Ohm'slaw wecan find the total current
flowing through the burner in each case....

TEACHER (interrupting): You don't need to find the cur­
rent. Let us denote by to, ta , tb and tc the times required to
heat the water in the teakettle to the boiling point in each
case. The evolved heat is equal to the power multiplied by the
heating time. In each case, the same amount of heat is gene­
rated. Using formula (182) to determine the power, we obtain

U
2
to = U

2
t a = U2tb = U

2t
c (184)

Ro Ra Rb Rc

Substituting equations (183) into (184) and cancelling the
common factors (U2 and I/R), we obtain

3t _!JL_ 2t b _ 3t e
0- 3 - 3 - 2
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from which we readily find the required values: ta= 9t o= 54
min, tb=9t o/2=27 min and tc=2to=12 min. Note that in
the given problem it was more convenient to apply formula
(182) to find the power, exactly because the voltage applied
to the electric table stove is a constant value. But consider the
following question. Given: a current source with an emf <C and
internal resistance r; the source is connected to a certain ex­
ternal resistance R. What is the efficiency of the source?

STUDENT B: The efficiency of a current source is the ratio
of the useful power, i. e. the power expended on the external
resistance, to the total power, i. e. to the sum of the powers
expended on the internal and external resistances:

J2R R
'rl= 12 (R+r) = R+r (185)

TEACHER: Correct. Assume that theinternal resistance of the
current source remains unchanged and only the external resis..
tance varies. How will the efficiency of the current source vary
in this case?

STUDENT B: At R=O (in the case of a short circuit), 'rl=0.
At R=r, 'rl=0.5. As R increases infinitely, the efficiency
approaches unity.

TEACHER: Absolutely correct. And how in this case will the
useful power vary (the power expended on the external resist..
ance)?

STUDENT B: Since the efficiency of the source increases with
R, it follows that the useful power will also increase. In short,
the larger the R, the higher the useful power wi11 be.

TEACHER: You"are wrong. An increase in the efficiency of
the current source means that there is an increase in the ratio
of the useful power to the total power of the source. The use­
ful power may even be reduced. In fact, the useful power is

lJ2 cf}2 X

P, =(R+r)2 R = -r-(x+l)2 (186)

where x=Rjr. If x~l, then Puocx. If x~l, then Puoc Ijx.
The useful power P,t reaches its maximum value at X= I
(i. e. R=r), when Pu = lJ2 j (4r). A curve of the function Y=
==xj (x+ 1) 2 is given in Fig. 124. It illustrates the variation
in the useful power with an increase in the external resistance.

Consider the following problem. Two hundred identical
electric bulbs with a resistance of 300 ohms each are connected in
parallel to a cur~ent source with an e",:f of 100 V and internal

213



resistance of 0.5 ohm. Compute the power expended on each
bulb and the relative change in the power expended on each bulb
if one of the two hundred bulbsburns out. Neglect the resistance
of the leads (Fig. 125).

STUDENT B: The total current in the external circuit equals
I t == {}/ (r+R/n)=50 A. The current passing through each
bulb is /=/I/n=0.25 A. Next we can find the powerexpended
on each bulb: P=/2R=37.5 W. To determine the relative

o

Fig. 124

t; r

Fig. 125

change In the power per bulb if one of the two hundred burns
out, I shall first find the power PI per bulb for n= 199, and
then compute the ratio

f - P1- P
- P (187)

TEACHER: I do not approve of this method for finding the
required ratio f. It should be expressed in the general form in
terms of the resistances Rand " and the number of bulbs n.
Thus

R cfJ2
P=fi2 ( R)2

'+n
R cfJ2

P1 = (n-l)2· ( R)2,+-­n-l

Substituting these equations into (187), we obtain

f = ( ~- 1 ) = n, +R 1= 1 - 1
P n,-,+R 1--'-

n,+R
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(188)

The fraction in the denominator of the last equation is much
less than unity (because there are many bulbs in the circuit
and the resistance of each one is much higher than the inter­
nal resistance of the current source). Therefore,we can apply
the approximation formula (173):

(
')-2 . 2,f= 1--- -1~--n,+R - n,+R

Alter substituting the numerical values into equation (188)
we find that f=0.0025.

STUDENT B: But why do you object to computing PI first
and then finding f by substituting the numerical values into
equation (187)?

TEACHER: You see that 1=0.0025. This means that if your
(numerical) method was used to obtain this result, we would
have to compute the value ofPI with an accuracy to the fourth
decimal place. You cannot even know beforehand to what
accuracy you should compute PI. If in our case you computed
PI to an accuracy of two decimal places, you would come to
the conclusion that power PI coincides with power P.

PROBLEMS

68. In the electric circuit shown in Fig. 126, <8= 100 V, ,=36 ohms
and the efficiency of the current source equals 50%. Compute the resistance
R and the useful power.

R

r l

Fig. 126

69. A current source is connected to a resistor whose resistance is four
times the internal resistance of the current source. How will the
efficiency of the source change (in per cent) if an additional-resistor with
a resistance twice the internal resistance is connected in parallel to the
external resistance?

70. Several identical resistances R are connected together in an arrange­
ment shown in Fig. 127. In one case, this arrangement is connected to
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the current source at points 1 and 2, and in another, at points 1 and 3.
Compute the internal resistance of the current source if the ratio of the

efficiencies of the source in the first and second cases equals :;. Find

the values of these efficiencies.
71. The resistances in a burner of an electric table stove are connected

together in an arrangement shown in Fig. 127. This arrangement is con­
nected to the supply mains at points 1 and 2, and, after a certain time,
500 grams of water are heated to the boiling point. How much water can
be heated to the boiling point in the same time interval when the arran­
gement of resistances is connected to the supply mains at points 1 and
3? The initial temperature of the water is the same in both cases. Neglect
all heat losses.

72. One and a half litres of water at a temperature of 20° C is heated
for 15 minutes on an electric table stove burner having two sections with
the same resistance. When the sections are connected in parallel, the water
begins to boil and 100 grams of it is converted into steam. What will
happen to the water if the sections are connected in series and the water
is heated for 60 minutes? The latent heat of vaporization is 539 cal per
gram. How much time will be required to heat this amount of water to the
boiling point if only one section is switched on?



The laws of geometrical optics have been known to mankindfor many centuries. Nevertheless, their elegance and com­pleteness still astonish us. Find this out for yourself by doingexercises on the construction of images formed in variousoptical systems.
We shall discuss the laws of reflection and refraction oflight.



§ 31.

DO YOU KNOW HOW

LIGHT BEAMS

ARE REFLECTED

AND REFRACTED?

TEACHER: Please state the
laws of reflection and refraction
of light.

STUDENT A: The law of refle­
ction is: the angle of incidence
is equal to the angle of reflection.
The law of refraction: the ratio
of the sine of the angle of inciden-
ce to the sine of the angle of ref­
raction is equal to the refraction
index for the medium.

TEACHER: Your statements are
very inac~urate. In the first pla­
ce, you made no mention of the
fact that the incident and reflec­
ted (or refracted) rays lie in the
same plane with a normal to the

boundary of reflection (or refraction) erected at the point of
incidence. If this is not specified, we could assume that reflec­
tion takes place as illustrated in Fig. 128. Secondly, your sta­
tement of the law of refraction refers to the special case of the
incidence of a ray from the air on the boundary of a certain
medium. Assume that in the general case the ray falls from a
medium with an index of refraction n , on the boundary of a

medium with an index of refraction
n2. We denote the angle of inci­
dence by a, 1 and the angle of refra­
ction by a, 2. In this case, the law
of refraction can be written as

sin al n2
sin a

2
= nl (189)

Fig. 128 This leads to your statement pro­
vided that for air n 1= 1.

Consider the following problem. A coin lies in water at a
depth H. We will look at it from above along a vertical. At
what depth do we see the coin?

STUDENT A: I know that the coin will seem to be raised
somewhat. I don't think I can give a more definite answer.

TEACHER: Let us draw two rays from the centre of the coin:
OA and OB18 (Fig. 129). Ray OA is not refracted (because it
is vertical) and ray OBIB is. Assume that these two diverging
rays enter the eye. The eye will see an image of the coin at the
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from which

point of intersection of the diverging rays OA and BIB, i. e.
at point 0 1• It is evident from the diagram that the required
distance h is related to the depth H by the relation

h tan a l == H tan a 2

( 190)

Owing to the smallness of angles al and a 2 we can apply the
approximation formula

tan a~sin a~a (191)

(in which the angle is expressed in radians, not degrees).
Using formula (191), we can rewrite equation (190) in the form

h~H sin a 2 == H (192)
- sinal n

Since for water n=4j3, h= (3j4)H.
STUDENT B: What will happen if we look at the coin, not

vertically, but from one side? ·
TEACHER: In this case, the coin will seem, not only raised,

but moved away (see the dashed lines in Fig.. 129). Obviously,
the computations will be much

t>r , A B more complicated in this case.
" " Consider the following prob-

, , lem. A diver of height h stands
=:\~~F~~-==~~~ - -=:~ on the bottomof a l~k~ of dep.th
--- ---\,-\- - - - 8, - - H. Compute the mtntmum dis-
- -\'\-,- - tance from the point where the
- -\~ \0\ - ~ diver stands to the points of
- - -\\'-\~ the. bottom that he can see

\~ '~ reflected from the surface of the
- -- _\~\- \ -0 water.

\\ 6 I STUDENT A: I know how to
\\ solve such problems. Let us

7J7J7,iJJJ/;"7J7Ji.77mrtiiiJ.77777i~o~77mi71777. denate the required distance
· by L. The path of the ray from

Fig. 129 point A to the diver's eye is
shown in Fig. 130. Point A is

the closest point to the diver that he can see reflected.from the
surface of the lake. Thus, for instance, a ray from a closer
point B is refracted at the surface and does not return to the
diver (see the dashed line in Fig. 130). Angle ~ is the critical
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angle for total internal reflection. It is found from the formula

sinex==-!... (193)
n

It is evident from the diagram that

L = h tan ex + 2 (H -h) tan ex = (2H -h) tan ex

Since tan ex=sincx/Vl-sin 2ex, then using equation (193),
we obtain

L == _2......H_-_h_
'Yn2 - 1

(194)

L

Fig. 130

t

After substituting n=4/3, we find that L= (3/V7) (2H-h).
TEACHER: Absolutely correct. And what kind of a picture

will the diver see overhead?
STUDENT A: Directly overhead he will see a luminous circle

of a radius l= (H-h)/Vn 2- 1= (3/V7j (H-h) (see Fig. 130).
Beyond the limits of this
circle he will see images of
objects lying on the bottom
of the lake.

STUDENT B: What will
happen if the part of the lake
bottom where the diver is
standing is not horizontal,

- but inclined?
'J17li77t7i7T!TJ777li77t7J77JTl.7TTT!7J?I7.7JmiJ!f7J,A TEACHER: In this case,

the distanceL will evidently
depend on the direction in
which the diver is looking.
You can readily see that

this distance will be minimal when the diver is looking
upward along the inclined surface, and maximal when he looks
in the opposite direction. The result obtained in the preceding
problem will now be applicable only when the diver looks in
a direction along which the depth of the lake doesn't change
(parallel to the shore). A problem with an inclined lake bottom
will be given as homework (see Problem 74).

STUDENT A: Can we change the direction of a beam by in..
serting a system of' plane-parallel transparent plates in its
path?

TEACHER: What do you think?
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sin (Xl n2 •

sin (X2 = n.'

sin (X3 1
sin (X4 = n3

sin (xo--=n·sin (Xl l'

sin (X 2 n3 •-.-=-,
sin (X3 n2

STUDENT A: In principle, I think we can. We know that
the beam, upon being refracted, travels in a different direction
inside a plate.

STUDENT B: I don't agree. After emerging from the plate
the beam will still be parallel to its initial direction.

TEACHER: Just prove this, please, using a system of several
plates having different indices of refraction. .

STUDENT B: I shall take three plates with indices of refrac­
tion nI, n2 and n3. The path of the beam through the system is

shown in Fig. 131. For refraction of
the beam at each of the boundaries,
we can write

Multiplying together the left-hand
sides and right-hand sides of these
equations, respectively, we obtain
(sin (Xo/sin (X4)= 1. Thus, (XO=(X4' which
is what we started out to prove.

~3 TEACHER: Absolutely correct. Now,
\ let us discuss the limits of applicability

.........~~~~:- of the laws of geometrical optics.
STUDENT B: These laws are not

applicable for distances of the order of
the wavelength of light or shorter. At

. such small distances the wave proper-
Fig. 131 ties of light begin to appear.

TEACHER: You are right .. This is something that examinees
usually seem to understand sufficiently well. Can you tell me
about any restrictions on the applicability of the laws of
geometricaloptics from the other side-from the side of large
distances?

STUDENT B: If the distances are longer than the wavelength
of light, then light can be considered within the scope of
geometrical optics. At least that is what we were told before.
I think there are no restrictions on the use of geometrical
optics for large distances.

TEACHER: You are mistaken. Just imagine the following
picture: you are sending a beam of light into space, completely
excluding the possibility of its scattering, Assume that in one
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second you turn the apparatus sending the light beam through
an angle of 60°. The question is: during this turning motion
what will be the velocity of points of the beam at distances
of over 300,000 kilometres from the apparatus?

STUDENT B: I understand your question. Such points must
travel at velocities greater than that of light. However, accord­
ing to the theory of relativity, velocities greater than the
velocity of light are impossible only if they are the velocities
of material bodies. Here we are dealing with a beam.

TEACHER: Well, and isn't a light beam material? As you
can see, geometrical optics is inconsistent for excessively
great distances. Here we must take into consideration that a
light beam is a stream of particles of li~ht called photons. The
photons which were emitted from the apparatus before we tur­
ned it "have no idea" about the subsequent turning motion and
continue their travel in the direction they were emitted. New
photons are emitted in the new direction. Thus, we do not
observe any turning of the light beam as whole.

STUDENT B: How can we quantitatively evaluate the limit
of applicability of the lawsof geometrical optics from the side
of large distances?

TEACHER: The distances should be such that the time re­
quired for light to cover them must be much less than any
characteristic time in the given problem (for example, much
less than the time required for turning the apparatus emitting
the light beam). In this case, the beam as a whole is not dest­
royed, and we can safely use the laws of geometrical optics.

PROBLEMS
73. We are looking vertically from above at an object covered with

a glass plate which is under water. The plate is 5 cm thick; there is a IO-cm
'layer of water above it. The index of refraction of glass is 1.6. At what dis­
tance from the surface of the water 90 we see the image of the· object?

74. A diver 1.8 m high stands on the bottom of a lake, at a spot which
is 5 m deep. The bottom is a plane inclined at an angle of 15°. Compute
the minimum distance along the bottom from the point where the diver
stands to the points on the bottom that he sees reflected from the surface.

75. We have a glass plate 5 ern thick with an index of refraction equal
to 1.5. At what angle of incidence (from the air) will the rays reflected and
refracted by the plate be perpendicular to each other? For this angle of
incidence compute the displacement of the ray due to its passage through
the plate.

76. We have a glass plate of thickness d with an index of refraction n.
The angle of incidence of the ray from the air onto the plate is equal to the
angle of total internal reflection for the glass of which the plate is made.
Compute the displacement of the ray due to its passage through the plate.



Fig. 132

§ 32.

I-IO\V DO YOU CONSTRUCT

IMAGES FOR~\ED

BY ~\IRRORS

AND LENSES?

TEACHER: Quite often we find
that examinees are incapable of
constructing images formed by
various optical systems, such as
lenses and plane and spherical
mirrors. Let us consider some
typical examples. Construct the
image of a man formed in the
plane mirror shown in Fig. 132a.

STUDENT A: It seems to me
that no image will be formed by
the mirror in this case because
the mirror is located too high
above the man.

TEACHER: You are mistaken.
There will be an image in the
mirror. Its construction is given

in Fig. 132b. It is quite evident that to construct the image
it is sufficient to prolong the line representing the surface of
the mirror and to draw an image symmetrical to the figure
of the man with respect to this line (surface of the mirror).

A STUDENT A: Yes, I un-
B derstand, but will the man

1 see his image?
TEACHER: That is ano­

ther question. Asa matter of
fact, the man will not see
his image, because the mir­
ror is located too high above
him and is inconveniently
inclined. The image of the
man will be visible in the
given mirror only to an
observer located within the

angle formed by rays AA I and BB 1. It is appropriate to
recall that the observer's eye receives a- beam of diverging
rays from the object being observed. The eye will see
an image of the object at the point of intersection
of these rays or of their extensions (see Figs. 129 and
132b).

Consider the construction of the image formed by a system
of two plane mirrors arranged perpendicular to each other
(Fig. 133a).

(a)
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STUDENT A: We simply represent the reflection of the object
in the two planes of the mirrors. Thus we obtain two images as-­
shown in Fig. 133b.

TEACHER: You have lost the third image. Note that the rays
from the object that-are within the right angle AGB (Fig. 133c)
are reflected twice: first from one mirror and then from the

h, (0) other. The paths of these
. (a) ( . ,,/ two rays are illustrated in

L
~' Fig. 133c. The intersection

o-~ --, i·~. 0 of the exten.sions of th~se
~ I ~:- I B rays' determines the third

/, //dd. / L,/~///,///',/, I t;/ /'1/ / image of the object.
6 Ji---<> Ne"t,' we shall consider

Fig. 133 a number of examples in­
volving a converging lens.

Construct the image formed by such a lens in the case illust­
rated in Fig. 134a.

STUDENT A: That's very simple. My construction is shown
in Fig. 134b.

TEACHER: Good. Now, assume that one half of the lens is
closed by an opaque screen as shown in Fig. 134c. What will
happen to the image?

(a) (0) (C)

( e)

Fig. 134

STUDENT A: In this case, the image will disappear.
TEACHER: You are mistaken. You forget that the image of

any point of the arrow (for example, its head) is obtained as a
result of the intersection of an infinitely large number of
rays (Fig. 134d). We usually restrict ourselves to two rays
because the paths of two rays are sufficient to find the poSi­
tion and size of the image by construction. In the given case,
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Fig. 135

the screen shuts off part of the rays falling on the lens. The
other part of the rays, however, pass through the lens and form
an image of the object (Fig. 134e). Since fewer rays participate
in forming the image, it will not be so bright as before.

STUDENT B: From your explanation it follows that when we
close part of the lens with an opaque screen, only the bright­
ness of the image is changed and nothing else. However,
anybody who has anything to do with photography knows that
(a) when you reduce the aperture ope­

ning of the camera lens by irising,
i.e. you reduce the effective area of
the lens, another effect is observed
along with the reduction in the
brightness of the image: the image
becomes sharper, or more clear-cut.
Why does this happen?

TEACHER: This is a very approp­
riate question. It enables me to
emphasize the following: all our
constructions are based on the as­
sumption that we can neglect de­
fects in the optical system (a lens
in our case). True, the word "defects"
is hardly suitable here since it does
not concern any accidental short­
comings of the lens, but its basic
properties. It is known that if two
rays, parallel to and differently
spaced from the principal optical
axis, pass through a lens, they will,
after refraction in the lens, intersect
the principal optical axis, strictly

speaking, at different points (Fig. 135a). This means that the
focal point of the lens (the point of intersection of all rays
parallel to the principal optical axis), or its focus, wi11 be
blurred; a sharply defined image of the object cannot be
formed. The greater the differences in the distances of the
various rays from the principal axis, the more blurred the image
wi 11 be. When the aperture opening is reduced by irising, the
lens passes a narrower bundle of rays. This improves sharpness
to some extent (Fig. 135b).

STUDENT B: Thus, by using the diaphragm we make the
image more sharply defined at the expense of brightness.
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TEACHER: Exactly. Remember, however, that in construct­
ing the image formed by lenses, examinees have every reason
to assume that parallel rays always intersect at a single point.
This point lies on the principal optical axis if the bundle of
parallel rays is directed along this axis; the point lies on
the focal plane if the bundle of parallel rays is directed at
some angle to the principal optical axis. It is important,
however, for the examinee t.o understand that this treatment is
only approximate and that a more accurate approach would
require corrections for the defects of optical systems.

STUDENT A: What is the focal plane of a lens?
TEACHER: It is a plane passing through the principal focus

of the lens perpendicular to the principal optical axis. Now,
what is the difference between images formed by a plane mir­
ror and by a converging lens in the example of Fig. 134?

STUDENT A: In the first case (with the mirror) the image is
virtual, and in the second it is real.

TEACHER: Correct. Please explain the difference between
virtual and real images in more detail.

STUDENT B: A virtual image is formed by the intersection,
not of the rays themselves, but of their extensions. Real
images are formed by the intersections of the rays themselves.
No wonder then that a virtual image can be seen as being some­
where behind a wall, where the rays cannot penetrate.

TEACHER: Quite right. Note also that a virtual image can be
observed only from definite positions. In the case of a real
image you can place a screen where the image is located and
observe the image from any position. Consider the example
illustrated in Fig. 136a. Determine, by construction, the direction
of ray AA i after it passes through a converging lens if the path
of another ray(BB1B a in Fig. 136a) through this lens is known.

STUDENT A: But we don't know the focal length of the lens.
TEACHER: Well, we do know the path of the other ray be­

fore and after the lens.
STUDENT A: We didn't study such constructions at school.
STUDENT B: 1 think that we should first find the focal

length of the lens. For this purpose we can draw a vertical
arrow somewhere to the left of the lens so that its head touches
ray BB 1. We shall denote the point of the arrowhead by the
letter C (Fig. 136b). Then we pass a ray from point C through
the centre of the lens. This ray will go through the lens
without being refracted and, at a certain point E, will inter­
sect ray B I B 2" Point E is evidently the image of the point of
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the arrowhead. It remains to draw a third ray from the arrow­
head C, parallel to the principal optical axis of the lens.
Upon being refracted, this last ray wi11 pass through the image
of the arrowhead, i. e. through point E. The point of inter­
section of this third ray with the principal axis is the required
(a) focus of the lens. This con-

A, struction is given in Fig.
136b.

The focal length being
known, we can now const­
ruct the path of ray AA 1

(b) after it is refracted by the
lens. This is done by draw­
ing another vertical arrow
with the point of its head
lying on ray AA 1 (Fig.
I36c). Making use of the
determined focal length, we
can construct the image of

..:t..-.-=::::::::--+-::~~~-r--- this second arrow. The re-
quired ray will pass through
point A i and the head of
the image of the arrow. This
construction is shown in
Fig. 136c.

TEACHER: Your argu­
ments are quite correct.

81 They are based on finding
Fig. the image of a certain auxi-

liary object (the arrow).
Note that this method is convenient when you are asked to
determine the position of the imageof a luminous point lying
on the principal axis of the lens. In this case it is convenient
to erect an arrow at the luminous point and construct the image
of the arrow. It is clear that the tail of the image of the arrow
is the required image of the luminous point.

This method, however, is too cumbersome for our example.
I shall demonstrate a simpler construction. To find the focal
length of the lens, we can draw ray EO through the centre of
the lens and parallel to ray BB 1 (Fig. 136d). Since these two
rays are parallel, they intersect in the focal plane behind the
lens (the cross-section of the focal plane is shown in Fig. 136d
by a dashed line). Then we draw ray CO through the centre
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of the lens and parallel to ray AA 1. Since these two parallel
rays should also intersect in' the focal plane after passing
through the lens, we can determine the direction of ray AA 1

(a) after passing through the lens.
A As you can see, the construction
___A.:o.....Jl is much simpler.

STUDENT B: Yes, your method
o is appreciably simpler.

TEACHER: Try to apply this
method to a similar problem in
which a diverging lens is used

(b) instead of a converging one (Fig.
137a).

STUDENT B: First I will draw
a ray through the centre of the
lens parallel to ray BB 1. In
contrast to the preceding prob­
lem, the extensions of the rays,
and not the rays themselves, will

Fig. 137 intersect (we may note that for a
ray passing through the centre,

the extension will coincide with the ray itself). As a result,
the focal plane, containing the point of intersection, will
now be to the left of the lens instead of to the right (see the
dashed line in Fig. 137b).

TEACHER (intervening): Note that the image is always
virtual in diverging lenses.

STUDENT B (continuing): Next I shall pass a ray through the
centre of the lens and parallel to ray AA 1. Proceeding from the
condition that the extensions of these rays intersect in the
focal plane, I can draw the required ray.

TEACHER: Good. Now tell me, where is the image of an
object a part of which is in front of the focus of a converging
lens, and the other part behind the focus (the object is of finite
width)?

STUDENT B: I shall construct the images of several points
of the object located at various distances from the lens. The
points located beyond the Iocus will provide a real image (it
will be to the right of the lens), while the points in front of
the focus will yield a virtual image (it will be to the left of
the lens). As the chosen points approach the" focus, the images
will move away to infinity (either to the right or to the left
of the lens). .
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TEACHER: Excellent. Thus, in our case the image of the
object is made up of two pieces (to the left and right of the
lens). Each piece begins at a certain finite distance from the
lens and extends to infinity. As you see, the question "Can
t a)

Fig. 138

(a)

...... ......
...... ......

......
......

Fig. 139

\
\

\
\

\
\

an object have a real and a virtual image simultaneously?"
should be answered in the affirmative.

I see that you understand the procedure for constructing the
images formed by lenses. Therefore, we can go over to a more
complicated item, the construction of an image formed by a
system of two lenses. Consider the following problem: we have
two converging lenses with a common principal optical axis and
different focal lengths. Construct the image of a vertical arrow
formed by such an optical system (Fig. 138a). The focuses
of one lens are shown on the diagram by x's and those of the
other, by blacked-in circles.

STUDENT B: To construct the image of the arrow formed by
two lenses, we must first construct the image formed by the
first lens. In doing this we can disregard the second lens.
Then we treat this image as if it were an object and, disregard­
ing the first lens, construct its image formed by the secondlens.

TEACHER: Here you are making a very typical error. I have
heard such an answer many times. It is quite wrong.
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Let us consider' two rays originating at the point of the
arrowhead, and followout their paths through the given system
of lenses (Fig. 138b). The paths of the rays after they pass
through the first lens are easily traced. To find their paths
after the second lens, we shall draw auxiliary rays parallel to
our rays and passing through the centre of the second lens. In
this case, we make use of the principle discussed in the preced­
ing problems (parallel rays passing through a lens should
intersect in the focal plane). The required image of the point
of the arrowhead will be at the point of intersection of the two
initial rays after they leave the second lens. This construction
is shown in detail in Fig. 138b. Now, let us see the result we
would have obtained if we had accepted your proposal. The
construction is carried out in Fig. 138c. Solid lines show the
construction of the image formed by the first lens; dashed lines
show the subsequent construction of the image formed by the
second lens. You can see that the result would have been
entirely different (and quite incorrect!).

STUDENT B: But I am sure we once constructed an image
exactly as I indicated.

TEACHER: You may have done so. The fact is that in certain
cases your method of construction may turn out to be valid
because it leads to results which coincide with those obtained
by my method. This can be demonstrated on the preceding
example by moving the arrow closer to the first lens, i.e,
between the focus and the lens. Figure 139a shows the constru­
ction according to my method, and Fig. 139b, according to
yours. As you see, in the given case the results coincide.

STUDENT B: But how can I determine beforehand in what
cases my method of constructing the image can be used?

TEACHER: It would not be difficult to specify the conditions
for the applicability of your method for two lenses. These
conditions become much more complicated for a greater num­
ber of lenses. There is no need to discuss them at all. Use my
method and you won't get into any trouble. But I wish to ask
one more question: can a double-concave lens be a conver­
ging one?

STUDENT B: Under ordinary conditions a double-concave
lens is a diverging one. However, it will become a conver­
ging lens if it is placed in a medium with a higher index
of refraction than that of the leris material. Under the
same conditions, a double-convex lens will be a diverging
one.



§ 33.

HOW WELL DO YOU

SOLVE PROBLEMS

INVOLVING MIRRORS

AND LENSES?

TEACHER: I would like to
make some generalizing remarks
which may prove to be extremely
useful in solving problems in­
volving lenses and spherical (con­
cave and convex) mirrors, The
formulas used for such problems
can be divided into two groups.
The first group includes formulas
interrelating the focal length F
of the lens (or mirror),' the dis­
tance d from the object to the
lens (or mirror) and the distance
f from the image to the lens (or
mirror): .

1 1 1
7+T=p (195)

in which d, f and F are treated as algebraic quantities whose
signs may differ from one case to another. There are only
three possible cases, which are listed in the following table.

Converging lenses and concave mirrors

d>F d<F

1. d > 0, F > 0 and f > 0 2. d > 0, F > 0 and f < 0
Real image Virtual image

Diverging lenses and convex mirrors

3. d > 0, F < 0 and I < 0
Virtual image

Thus, d is always positive; the focal length F is positive for
converging lenses and concave mirrors and negative for diver­
ging lenses and convex mirrors; and the distance f is positive
for real images and negative for virtual images.

STUDENT A: As I understand, this table enables us to obtain
three formulas from the general formula (195) which contain
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(197)

(196)

(198)

the arithmetical values of the above-mentioned quantities:

I II}
Case 1: ~ +~ = ~ f
Case 2: (J-T=p

I 1 I
Case 3: (j-T= -p)

TEACHER: Yes. Exactly so.
STUDENT A: Somehow, I have never paid any attention to

the analogy between lenses and the corresponding spherical
mirrors.

TEACHER: The second group includes formulas which relate
the focal length of the lens (or mirror) to its other characteris­
tics. For mirrors we have the simple relationship

R
F=±"2

where R is the radius of curvature of the mirror. The plus sign
refers to concave mirrors (the focus is positive) and the minus
sign to convex mirrors (the focus is negative). For lenses

1 (I 1)-=(n-l) -+-F R1 R2

where n is the index of refract ion of the lens material and
R 1 and R 2 are the radii of curvature of the lens. If the ra­
dius R refers to a convex side of the lens it is taken with
a plus sign; if it refers to a concave side, with a minus sign.
Youcan readily see that double-convex, plano-convex and con­
vexo-concave (converging meniscus) lenses are all converging
because, according to formula (198), they have a positive
focus.

STUDENT A: What changes will have to be made in formula
(198) if the lens is placed in a medium with an index of ref­
raction no?

TEACHER: Instead of formula (198) we will have

-!-=(~_1)(_1 +_1)
F no R) R2

(199)

When we pass over from an optically less dense medium
(no<n) to an opt ically more dense one (n o>n), then, accor­
ding to formula (199), the sign of the focus is reversed and
therefore a converging lens becomes a diverging one and, con-
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versely, a diverging lens becomes a converging one. Let us
proceed to the solution of specific problems. The convex side of
a plano-convex lens with a radius of curvature R and index of
refraction n is silver-plated to obtain a special type of concave

mirror. Find the focal length of
the mirror.

STUDENT A: Please allow me
to do this problem. We begin by
directing a ray parallel to the
principal optical axis of the lens.
After it is reflected from the
silver-plated surface, the ray goes
out of the lens and is thereby
refracted (Fig. 140). If the ray
had not been refracted, it would

Fig. 140 have intersected the principal
axis at a distance of R/2 from the

mirror in accordance with formula (197). As a result of refra­
ction, the ray intersects the principal axis somewhat closer
to the mirror. We shall denote the required focal length by F.
It is evident from the diagram that

R2 tan at = F tan Cl2

Owing to the smallness of angles at and a", we can apply
formula (191). Then

R tan a 2 sin a 2
-=--~--=n2F tan a 1 - sin at

from which
RF=­2n (200)

STUDENT B: I suggest that this problem be solved in a
different way. It is known that if we combine two systems with
focal lengths F 1 and F 2, the new system will have a focal
length F which can be determined by the rule for adding the
powers of lenses, i. e.

I 1 1-=-+-F F I F 2
(201 )

In the given case we have a lens with a focal length F 1=
=R/(n-l), according to equation (198), where one of the ra­
dii is infinite, and a concave mirror for which F2=R/2
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Substituting the expressions for F 1 and F 2 into formula (201)
we obtain

(202)

from which
RF=- (203)

n+l

This shows that Student A did not do the problem right
[see his answer in equation (200)].

TEACHER (to Student B:) No, it is you who is wrong. The
result (200) is correct.

STUDENT B: But is rule (201) incorrect in the given case?
TEACHER: This rule is correct and is applicable in the gi­

ven case.
STUDENT B: But if rule (201) is correct, then equation

(202) must also be correct.
TEACHER: It is precisely here that you are mistaken. The

fact is that the ray travels through the lens twice (there and
back). Therefore, you must add the powers of the mirror and
of two lenses. Instead of equation (202)-you should have written

. ..!-- 2(n-l) -t-~
F - R R

from which we find that (I/F)= (2n-2+2)/R and, conse- ..
quently, F=R/ (2n), which coincides with the result obtained
in equation (200).

Consider another problem. A converging lens magnifies the
image of an ob ject fourfold. I f the object is moved 5 cm, the
magnification is reduced by one half. Find the focal length of
the lens.

STUDENT A: I always get confused in doing such problems.
I think you have to draw the path of the rays in the first posi­
tion and then in the second, and compare the paths.

TEACHER: I dare say it will not be necessary at all to draw
the paths of the rays in this case. According to formula (195),
we can write for the given position that (1 /F)= (1 Id1)+ (1 If 1)'
Since (fl/d 1)=k 1 is the magnification in the first case, we
obtain

or
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By analogy we can write for the second position that

d == F k2 + 1
2 k2

Thus

(204)

Fig. 141

According to the conditions of the problem, d1-d 2= 5 ern,
k 1;:::::::4 and k 2=2. Substituting these values into equation
(204), we find that F=20 em.

PROBLEMS
77. A lens with a focal length of 30 em forms a virtual image reduced

to 2/3 of the size of the object. What kind of a lens is it (converging or
diverging)? What is the distance to the object? What will be the size of
and distance to the image if the lens is moved 20 em away from the object?

78. A luminous point is on the principal optical axis of a concave
mirror with a radius of curvature equal to 50 em. The point is 15 em from
(a) the mirror. Where is the image of the point?

What will happen to the image if the mirror

i ft
is moved another 15 em away from the
point?

. ._~- . -~. 79. An optical system consists of a
diverging and a converging lens [Fig. 141a;
the X 's indicate the focuses (focal points)
of the lenses). The focal lengths of the lenses
equal 40 em. The object is at a distance of
80 em in front of the diverging lens. Con­
struct the image of the object formed by
the given system and compute its position.

80. An optical system consi-sts of three
identical converging lenses with focal
lengths of 30 em. The lenses are arranged
with respect to one another as shown in
Fig. 141b (the X 's are the focal points of

the lenses). The object is at 8 distance of 60 em from the nearest lens.
Where is the image of the object formed by the given system?

81. The convex side of a plano-convex lens with a radius of curvature
of 60 mm is silver-plated to obtain a concave mirror. An object is located
at a distance of 25 em in front of this mirror. Find the distance from the
mirror to the image of the object and the magnification if the index of
refraction of the lens material equals 1.5.

82. The concave side of a plano-concave lens with a radius of curvature
of 50 em is silver-plated to obtain a convex mirror. An object is located
at a distance of 10 cm in front of this mirror. Find the distance from the
mirror to the image of the object and the magnification of the image if
the index of refraction of the lens material equals 1.5.



ANSWERS

1. 20 m; 1 sec; vA = 10.2 m/sec:
VB= 10.6 rn/sec.

2. Vo = 11.3 rn/sec: x = 4 m; y = 0.8 ITI;
t=0.5 sec; vA=9.4 m/sec; vB=15.2 m/sec,

V 2 2 .
3. (I) t VI + V2 +2VlV2 cos (al +(2);

(2) t Vv~+ vi - 2 VI 0 2 sin al sin a 2 •

~ ... / 2 H-h + ... 1 H+3h
4. 2 V g V 2g

P-4F
5. cot a 4P

2 •

6.2~~
g cos- a .

7. 13.8 m/sec.
8. 37.~ m/sec; 1280 J.
9. 2.6 m/sec'': 42 N; 8.5 N.

10. 3.3 m/sect; 13 N.

11. 3.5 rn/sec'': 33.6 N; 50.4 N.

12. 6.9 rn/sec-: 8.8 N; 16.2 N; 1.5 N.

15. 0.45.

16. 7:4: 1.

17. V5gR •
81 n

18. 8GT2'

19. "h=R (1- eJR ) ; F=mw2R.

20. l.5R.
21. 120 kg/rn",

22. 3900 J.
23. 0.27.

24. 0.5.

25. F=mg (Z + 1) -Vgpw:

hi = 2h ( V~w - 1) - H.
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26. 7.5 krn/hr: 4.65 m.

(

. 2

h = v~ .!!!:-) cos 2 a sin a •
27. 2g M sina;+kcosa

28. (I) hI =:g (4gl sin2 ~ +v~ ) ;

h2 = l~g (4gl sin? ~ + v~) ;
(2) h=J~g ( 4gl sin? ~ + v~) .

m+M ,r-
29. vmin = --- y 5gl •m

M-m
30. H M+m ·

HM
31. 4M +3m ·

3"1/3
32. 4 JI 2".
33. 4.

34. 0.43 m/sec,
35. 27.4 rn/sec'': the direct ion of the acceleration is vert ically upward.

36. 1.28 N; 1.28 N; 0.62 N; 1.56 N.

37. At a distance of 2~ R to the right of the centre ol the disk.

V
38. 0.05 S '
39. 11.3 em; 13.4 mg.

4~. Lowered by 3 cm; 15.4 mg.

41. 59 g.

42. (l) 138 J; (2) 171 J.
43. It becomes 1.5 ern longer; 21.5 mg.

44. 735 g; it will not be formed; 0.58%.

45. 3Xl0- 8 sec; 5Xl08 In/sec.

46. 147 Vim.
mg-s-Eq . (mg+ Eq) 1sin a tan a47. , ~~--.,;.. ---

cos ex. 2
(mt-m2)g+E(qt-q2) .

48.
mt+m2

2mtm2g + (m2qt +mtq2) E
m1+m2
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59. R1,+2R2,+2RtR2 •

,dmv~ tan ex,
60. .,

<8ql-dmvo tan ex,

,dmv~

49.... /5 (mg+Eq).!-V m

50. 1.83 q.

1// g q2. mg
51. r TCQS(i- m[3 sin 3 ex ' cos ex, •

52. Y5g1- ~21 :'

53. 0.2 A.

54. 1 A.

55. 0.16 ohm.

56. 9.9 V; 1%.
57. 0.196 A; 1.96%.

58. 6X10- 6 C.

<8CRtR 2

61. <!1ql-dmv~ ·

62. arctan 3
2
<8ql •

vomd

63. 3'.75 V; 0.25 A.
2

-64. 3 R.

4
65. "5 R.

3
66. 4 R.

11
67. 20 R.

68. 60 ohms; 70 W.

69. It is red uced by 28.6%.

70. :; 89%; 83%.

71. 800 g.

72. 100 g of water will be converted into steam; 21 min.

73. 10.8 em.
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74. 7.4 m.
75. 56°; 2.3 em.

76. ~ (I - Yn21+ I ).

77. It is a diverging lens; d= 15 em; the image will move 6 em away
from the lens; k = 0.4. .

78. f = 37.5' em; the image will become real;
11 = 150 em.

79. At a distance of 100 ern to the right of the converging lens.

80. It is located at the centre of the middle lens.

81. 1=100 em; k=4.

82. f = 6.3 em; k= 0.63.
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